
Kintex-7 FPGA
Base Targeted Reference
Design
User Guide

UG882 (v1.2) August 3, 2012

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com UG882 (v1.2) August 3, 2012

Notice of Disclaimer
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the maximum
extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL
WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising
under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or
consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action
brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same.
Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are
subject to the terms and conditions of the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be
subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be
fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical
Applications: http://www.xilinx.com/warranty.htm#critapps.

Automotive Applications Disclaimer
XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING
FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A
VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE
XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES
THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF
XILINX PRODUCTS IN SUCH APPLICATIONS.

© Copyright 2012 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included
herein are trademarks of Xilinx in the United States and other countries. PCI, PCIe, and PCI Express are trademarks of PCI-SIG and used
under license. All other trademarks are the property of their respective owners.

Fedora Information

Xilinx obtained the Fedora Linux software from Fedora (http://fedoraproject.org/), and you may too. Xilinx made no changes to the software
obtained from Fedora. If you desire to use Fedora Linux software in your product, Xilinx encourages you to obtain Fedora Linux software
directly from Fedora (http://fedoraproject.org/), even though we are providing to you a copy of the corresponding source code as provided
to us by Fedora. Portions of the Fedora software may be covered by the GNU General Public license as well as many other applicable open
source licenses. Please review the source code in detail for further information. To the maximum extent permitted by applicable law and if
not prohibited by any such third-party licenses, (1) XILINX DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE; AND (2) IN NO EVENT SHALL XILINX BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE,DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Fedora software and technical information is subject to the U.S. Export Administration Regulations and other U.S. and foreign law, and may
not be exported or re-exported to certain countries (currently Cuba, Iran, Iraq, North Korea, Sudan, and Syria) or to persons or entities
prohibited from receiving U.S. exports (including those (a) on the Bureau of Industry and Security Denied Parties List or Entity List, (b) on
the Office of Foreign Assets Control list of Specially Designated Nationals and Blocked Persons, and (c) involved with missile technology or
nuclear, chemical or biological weapons). You may not download Fedora software or technical information if you are located in one of these
countries, or otherwise affected by these restrictions. You may not provide Fedora software or technical information to individuals or entities
located in one of these countries or otherwise affected by these restrictions. You are also responsible for compliance with foreign law
requirements applicable to the import and use of Fedora software and technical information.

Revision History
The following table shows the revision history for this document.

Date Version Revision

01/18/12 1.0 Initial Xilinx release.

05/22/12 1.1 Updated last paragraph of Hardware Test Setup Requirements. Updated Figure 3-1.
Updated table Table B-8.

http://www.xilinx.com
http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps

UG882 (v1.2) August 3, 2012 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design

08/03/12 1.2 Updated last paragraph of Hardware Test Setup Requirements. Added Vivado tools to
Rebuilding the Base TRD. Added step 6 to Generating the MIG IP Core through CORE
Generator Tool. Added Implementing the Design Using the Vivado Tools. Added
Vivado tools to Configuration Requirements.

Date Version Revision

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com UG882 (v1.2) August 3, 2012

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 5
UG882 (v1.2) August 3, 2012

Revision History . 2

Chapter 1: Introduction
The Base Targeted Reference Design . 7

Chapter 2: Getting Started
Requirements . 11
TRD Demonstration Setup . 12
Shutting Down the System . 25
Rebuilding the Base TRD . 26
Reprogramming the Base TRD . 30
Simulation . 32

Chapter 3: Functional Description
Hardware Architecture . 35
Software Architecture . 53

Chapter 4: Performance Estimation
PCI Express Performance . 61
Packetized Virtual FIFO Performance. 64
Measuring Performance . 64

Chapter 5: Designing with the TRD Platform
Software-Only Modifications . 67
Top-Level Design Modifications . 69
Architectural Modifications . 70

Appendix A: Resource Utilization

Appendix B: Register Description
DMA Registers. 76
User Space Registers . 79

Table of Contents

http://www.xilinx.com

6 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Appendix C: Directory Structure

Appendix D: Compiling Linux Drivers

Appendix E: Additional Resources
Xilinx Resources . 91
References . 91

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 7
UG882 (v1.2) August 3, 2012

Chapter 1

Introduction

The Kintex™-7 Base Targeted Reference Design (TRD) delivers all the basic components of
a targeted design platform for high performance in a single package. Targeted Design
Platforms from Xilinx provide customers with simple, smart design platforms for the
creation of FPGA-based solutions in a wide variety of industries.

This user guide details a TRD developed for high performance on a Kintex-7 FPGA. The
aim is to accelerate the design cycle and enable FPGA designers to spend less time
developing the infrastructure of an application and more time creating a unique value-add
design. The primary components of the Kintex-7 Base TRD are the Kintex-7 FPGA
integrated Endpoint block for PCI Express®, Northwest Logic Packet DMA, Memory
Interface Solutions for DDR3, and AXI Interconnect IP block.

The Base Targeted Reference Design
The Kintex-7 FPGA Base Targeted Reference Design showcases the capabilities of Kintex-7
FPGAs and the various IP cores developed for this FPGA family. Figure 1-1 shows the
block level overview of the architecture of the TRD. With a few custom RTL blocks
interfacing with the IP blocks, the TRD can deliver up to 10 Gb/s performance end to end.

This chapter introduces the TRD and summarizes the TRD features.

http://www.xilinx.com

8 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Chapter 1: Introduction

Note: The arrows in Figure 1-1 indicate AXI interface directions from master to slave. They do not
indicate data flow directions.

Base TRD Features
The Kintex-7 FPGA Base Targeted Reference Design has these components:

• 7 Series FPGAs integrated Endpoint block for PCI Express core

• Configured with either 4 lanes at a 5 Gb/s data rate (Gen2) or 8 lanes at a
2.5 Gb/s data rate (Gen1) for PCI Express v2.0

• Provides a user interface compliant with AXI4 stream interface protocol

• A performance monitor tracks the integrated block's AXI4 stream interface for
PCIe transactions

• Bus mastering Scatter Gather Packet DMA Engine from Northwest Logic, a
multichannel DMA

• Supports full-duplex operation with independent transmit and receive paths

• Provides an AXI4 stream interface on the back end

• Monitors the performance of data transfers in the receive and transmit directions

• Provides an AXI4 memory mapped target interface to access user-defined
registers

Note: The Northwest Logic Packet DMA shipped with the Base TRD is an evaluation version and
expires after 12 hours of run time. To get the full version, contact Northwest Logic [Ref 15].

• Multiport Virtual FIFO

• DDR3 SDRAM (64 bits at 1,600 Mb/s, 800 MHz) is used for buffering packets. The
Memory Controller is delivered through the Memory Interface Generator (MIG)
tool and interfaces to the DDR3 SRAM memory.

X-Ref Target - Figure 1-1

Figure 1-1: Kintex-7 FPGA Base TRD Block Diagram

UG882_c1_01_0112012

Multiport Virtual FIFO

Software

Multi-Channel
DMA for PCIe DDR3

C
ha

nn
el

-0
C

2S
S

2C
C

ha
nn

el
-1

S
2C

C
2S

64 x
1,600 Mb/s

P
C

Ie
 x

4
G

en
2

/x
8

G
en

1
Li

nk

VFIFO
Controller

Software
Driver

Interface Blocks in FPGA Third Party IPXilinx IP On BoardCustom Logic

AXI-ST AXI-MM

Hardware

VFIFO
Controller

VFIFO
Controller

VFIFO
Controller

Raw Packet Data Block

Checker

Generator
Loopback

Loopback

Raw Packet Data Block

Generator

Checker

User Space
Registers

Target Interface
AXI Master

256 x
200 MHz

64
 x

 2
50

 M
H

z

64 x
250 MHz

64 x
250 MHz

64 x
250 MHz

64 x
250 MHz

Performance
Monitor

G
U

I

G
T

X
 T

ra
ns

ce
iv

er

In
te

gr
at

ed
 B

lo
ck

 fo
r

P
C

I E
xp

re
ss

A
X

I-
S

T
 B

as
ic

 W
ra

pp
er

AXI
MIG

AXI
Interconnect

SI SI

SI SI

M
I DDR3

I/O

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 9
UG882 (v1.2) August 3, 2012

The Base Targeted Reference Design

• AXI Interconnect IP core with the Memory Controller supports multiple ports on
the memory.

• The Packetized Virtual FIFO controller controls the addressing of the DDR3
memory for each port, allowing the DDR3 memory to be used as Virtual Packet
FIFO.

• Software driver for a 32-bit Linux platform

• Configures the hardware design parameters

• Generates and consumes traffic

• Provides a Graphical User Interface (GUI) to report status and performance
statistics

The 7 Series FPGAs Integrated Block for PCI Express core and the Packet DMA are
responsible for data transfers from the host system to the Endpoint card (S2C) and
Endpoint card to host system (C2S). Data to and from the host is stored in a Virtual FIFO
built around the DDR3 memory. This Multiport Virtual FIFO abstraction layer around the
DDR3 memory allows the traffic to be moved efficiently without the need to manage
addressing and arbitration on the memory interface. It also provides a larger depth when
compared to storage implemented using Block RAMs.

The Integrated Block for PCI Express core, Packet DMA, and Multiport Virtual FIFO can be
considered as the base system. The base system can bridge the host system to any user
application running on the other end. The Raw Data Packet module is a dummy
application which generates and consumes packets. It can be replaced by any user-specific
protocol like Aurora or XAUI.

The software driver runs on the host system. It generates raw data traffic for transmit
operations in the S2C direction. It also consumes the data looped back or generated at the
application end in the C2S direction.

The modular architecture of the Base TRD hardware and software components simplifies
reuse and customization of the architecture to specific user requirements.

http://www.xilinx.com

10 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Chapter 1: Introduction

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 11
UG882 (v1.2) August 3, 2012

Chapter 2

Getting Started

This chapter is a quick start guide enabling the user to test the Kintex-7 FPGA Base
Targeted Reference Design (TRD) in hardware with the software driver provided and also
simulate it. It provides step-by-step instructions for testing the design in hardware.

Note: The screen captures in this document are conceptual representatives of their subjects and
provide general information only.

Requirements
This section lists the prerequisites for hardware testing and simulation of the Base TRD.

Hardware Test Setup Requirements
The prerequisites required to run and test the Base TRD include:

• KC705 board with the XC7K325T-2FFG900C FPGA

• Design files provided on a USB memory stick as a zipped collection including:

• Design source files

• Device driver files

• Board design files

• Documentation

• ISE® Design Suite, Logic Edition v13.4 or later

• Micro USB cable

• PCIe adapter cable, 4-Pin to 6-Pin

• Fedora 16 Live DVD for Intel-compatible PCs or pre-installed Fedora 16 Linux OS

• PC with PCIe v2.0 slot

For a list of all known issues, refer to the Kintex-7 FPGA Base Targeted Reference Design
Release Notes and Known Issues Master Answer Record (http://www.xilinx.com/
support/answers/45679.htm).

Simulation Requirements
The tools required to simulate the Base TRD are:

• ISE Design Suite, Logic Edition

• ModelSim simulation software, v6.6d or later

http://www.xilinx.com/support/answers/45679.htm
http://www.xilinx.com/support/answers/45679.htm
http://www.xilinx.com

12 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Chapter 2: Getting Started

TRD Demonstration Setup
This section provides the procedures for setting up the KC705 board and using the
application GUI in preparation for demonstrating the Base TRD.

Note: When following the demonstration setup steps for the Kintex-7 FPGA Base TRD, if the
behavior is not as described, refer to the known issues on the xilinx.com website [Ref 12].

Board Configuration and Bring Up
This section describes how to set up and install the KC705 board to demonstrate the Base
TRD.

Configure KC705 Board Switches and Jumpers

1. Confirm the KC705 board jumpers and switches are configured as shown in Table 2-1
and Figure 2-1.

Table 2-1: Switch and Jumper Settings

Jumper Function Setting

J32 PCIe configuration width — 4 lane design Jump 3-4

Switch Function or Type Setting

SW15 Board power slide-switch off

SW11 User GPIO DIP switch

4 off

3 off

2 off

1 off

SW13 DIP switch SW13 positions 1 and 2 control the setting of address
bits of the flash.

DIP switch SW13 positions 3, 4, and 5 control which configuration
mode.

5 (M0) M2 =0 M1=1 M0=0 — Master BPI

M2 =0 M1=0 M0=1 — Master SPI

M2 =1 M1=0 M0=1 — JTAG

off

4 (M1) on

3 (M2) off

2 off

1 off

http://www.xilinx.com/
http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 13
UG882 (v1.2) August 3, 2012

TRD Demonstration Setup

KC705 Board Installation

1. With the host PC switched off, insert the KC705 board in the PCIe slot through the
PCI Express x8 or x16 edge connector (Figure 2-2). The Base TRD programmed on the
KC705 board has a 4-lane PCIe v2.0 configuration, running at a 5 Gb/s link rate per
lane. The PCI Express specification allows for a smaller lane width Endpoint to be
installed into a larger lane width PCIe connector.

X-Ref Target - Figure 2-1

Figure 2-1: Switch and Jumper Locations

UG882_c2_01_011112

J27, J28

J29, J30

SW13

J32

SW15SW11

http://www.xilinx.com

14 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Chapter 2: Getting Started

2. Connect one of the spare 4-pin connectors from the PC’s 12V ATX power supply to J49
on the KC705 board using a 4-pin to 6-pin PCIe adapter cable. Toggle the KC705 board
power switch SW15 to the ON position. Figure 2-3 shows the 12V power supply
connection and power switch SW15.

3. Confirm the connectors are latched tight and power on the PC.

Note: If the user wishes to boot Linux from the Fedora 16 Live DVD, place the DVD in the PC’s
CD-ROM drive as soon as the PC system is powered on.

X-Ref Target - Figure 2-2

Figure 2-2: KC705 Board Plugged Into a PCIe x16 Slot

X-Ref Target - Figure 2-3

Figure 2-3: Power Supply Connection

UG882_c2_02_011112

UG882_c2_03_011112

SW15

J49 6-pin
Connector

12V ATX Power
Supply Plugged
Into the 4-pin
Connector

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 15
UG882 (v1.2) August 3, 2012

TRD Demonstration Setup

4. Check the status of the design on the KC705 board LEDs. The Base TRD provides
status on the GPIO LEDs on the front side of the KC705 board near the upper right
edge (Figure 2-4). When the PC is powered on and the Base TRD has successfully
configured on the FPGA, the LED status (right to left) should indicate:

• LED 0 - ON (the PCIe link is up)

• LED 1 - FLASHING (the PCIe user clock is present)

• LED 2 - ON (lane width is what is expected, else LED 2 flashes—expected lane
width is 4 for a x4 design and 8 for a x8 design)

• LED 3 - ON (Memory calibration is done)

• LED 4 to LED 7 - Not connected

Linux Boot Up and Driver Installation

Booting Fedora Live

If Fedora 16 Linux OS is installed on the PC system's hard disk, boot as a root-privileged
user and go to step 2, otherwise go to step 1.

1. To boot from the Fedora 16 Live DVD provided in the kit, place the DVD in the PC's
CD-ROM drive.

The Fedora 16 Live Media is for Intel-compatible PCs. For more details, see Fedora
Information, page 2. The DVD contains a complete, bootable 32-bit Fedora 16
environment with the proper packages installed for the Base TRD demonstration
environment. The PC boots from the CD-ROM drive and logs into a liveuser account.
This account has kernel development root privileges required to install and remove
device driver modules.

X-Ref Target - Figure 2-4

Figure 2-4: GPIO LEDs Indicate Base TRD Status

UG882_c2_04_011112

http://www.xilinx.com

16 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Chapter 2: Getting Started

Note: The BIOS boot order settings might have to be changed to make sure that the CD-ROM
is the first drive in the boot order. To set the boot order, enter the BIOS menu by pressing the DEL
or F2 key when the system is powered on. Set the boot order and save the changes.

The DEL or F2 key is used by most PC systems to enter the BIOS setup. Some PCs might have
a different way to enter the BIOS setup.

While booting, from the CD-ROM drive, the PC displays the images shown in
Figure 2-5.

After the Fedora Core boots, log in as liveuser.

2. After Fedora Core boots, open a terminal window (click
Activities > Application, scroll down, and click the Terminal icon).

To find out if the PCIe integrated Endpoint block is detected, at the terminal command
line, type:

$ lspci

The lspci command displays the PCI and PCI Express buses of the PC. On the bus of
the KC705 card slot is the message

Communication controller: Xilinx Corporation Device 7042

This message confirms that the design programmed into the KC705 board has been
found by the BIOS and the Fedora 16 OS. The bus number varies depending on which
PC motherboard and slot is used.

Figure 2-6 shows an example of the output from the lspci command. The red
highlight show that Xilinx device 7042 has been found by the BIOS on bus number 2
(02:00.0 = bus:dev.function).

X-Ref Target - Figure 2-5

Figure 2-5: Fedora 16 Live DVD Boot Images

First Screen Last Boot Screen Booted
UG882_c2_05_010612

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 17
UG882 (v1.2) August 3, 2012

TRD Demonstration Setup

Copy Base TRD Files

The Base TRD design files are provided on a USB flash drive delivered as a part of the kit.
The contents of the USB drive are also available on the Kintex-7 FPGA Evaluation Kit web
page. Check for updates to Base TRD at the same location [Ref 13].

1. Insert the USB flash drive into a USB connector on the PC System and allow Fedora 16
to mount the USB device. An icon will pop up on the desktop when the USB flash
drive is mounted.

Note: The USB drive must always be unmounted before powering down the system or
removing the flash drive. File corruption or kernel crash might occur otherwise. To unmount the
USB flash drive, right-click the USB flash drive icon and select Safely Remove Drive.

2. Double click the USB flash drive icon and copy the k7_pcie_dma_ddr3_base folder
into any directory.

Driver Installation

To set up and run the TRD demonstration, the software driver should be installed on the
PC system.

Installation of the software driver involves:

• Building the kernel objects and the GUI.

• Inserting the driver modules into the kernel.

X-Ref Target - Figure 2-6

Figure 2-6: PCI and PCI Express Bus Devices

UG882_c2_06_010612

http://www.xilinx.com

18 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Chapter 2: Getting Started

After the driver modules are loaded, the application GUI can be invoked. The user can set
parameters through the GUI and run the TRD.

When the user is done running the TRD, the application GUI can be closed and the drivers
can be removed.

A script is provided to execute these actions. To run this script:

1. Double-click k7_trd_lin_quickstart in the k7_pcie_dma_ddr3 folder
(Figure 2-7).

2. When the window prompt shown in Figure 2-8 appears. Click Run in Terminal.

The application GUI is invoked. Proceed to Using the Application GUI to set design
parameters and run the Base TRD.

In case issues are encountered or if the user wants to understand driver details, the user
can run the individual steps detailed in Appendix D, Compiling Linux Drivers.

X-Ref Target - Figure 2-7

Figure 2-7: k7_pcie_dma_ddr3 Folder

X-Ref Target - Figure 2-8

Figure 2-8: Run in Terminal

UG882_c2_07_010612

UG882_c2_08_010612

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 19
UG882 (v1.2) August 3, 2012

TRD Demonstration Setup

Using the Application GUI
After the drivers are loaded and the GUI is invoked, the application can be configured for
sending and receiving data. The GUI shows the Base TRD status and performance statistics
collected over time.

This section provides a screen-by-screen description of the GUI.

Test Setup and Payload Statistics

This screen shows up as soon as the GUI is invoked. It defines the various test options
provided for the raw data paths.

For each raw data path: The user can input a fixed packet size in bytes. While
executing the test, the software driver builds packets of fixed length. The packet size
can range from 64 bytes to 32,768 bytes. Select Enable Loopback to loopback the
transmit data and send it in the receive direction. This loopback is done at the
application end (Raw Packet Data block). Click Start Test to begin packet
generation. As packets are generated, the GUI plots the number of bytes transmitted
and received by the Packet DMA for each raw data path. Click Stop Test to stop
packet generation. The screen in Figure 2-9 shows the data throughput obtained from
the C2S and S2C DMA engines for the raw data Path0 with Enable TX→ RX
Loopback selected.

http://www.xilinx.com

20 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Chapter 2: Getting Started

Unselect Enable Loopback to select Enable TX Checker or Enable RX
Generator or both. Select Enable TX Checker and click Start Test to enable
the data checker implemented in hardware. The packets generated by the driver are
transferred via the Packet DMA and are verified at the application end (Raw Packet
Data block) by the checker. The GUI plots the number of bytes transmitted by the
Packet DMA. Click Stop Test to stop packet generation in the transmit path The
screen in Figure 2-10 shows the data throughput obtained from the S2C DMA engine
for the raw data Path0 with Enable TX Checker selected.

X-Ref Target - Figure 2-9

Figure 2-9: Test Setup and Payload Statistics Screen – Raw Data TX>RX Loopback

UG882_c2_09_010612

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 21
UG882 (v1.2) August 3, 2012

TRD Demonstration Setup

Uncheck Enable TX Checker, select Enable RX Generator, and click Start
Test to enable the data generator implemented in hardware. The packets generated
are transferred via the Packet DMA to the host system and are spot checked by the
driver. The GUI plots the number of bytes received by the Packet DMA. Click Stop
Test to stop packet generation in the receive path. The screen in Figure 2-11 shows the
data throughput obtained from the S2C DMA engine for the raw data Path0 with
Enable RX Generator selected.

X-Ref Target - Figure 2-10

Figure 2-10: Test Setup and Payload Statistics Screen – Raw Data TX Only

UG882_c2_10_010612

http://www.xilinx.com

22 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Chapter 2: Getting Started

Select Enable TX Checker and Enable RX Generator and click Start Test to
enable both the data checker and the data generator. Packets are generated and
checked in both directions. The GUI plots the number of bytes transmitted and
received by the Packet DMA. Click Stop Test to stop packet generation. The screen
in Figure 2-12 shows the data throughput obtained from the S2C and C2S DMA
engines for the raw data Path0 with Enable TX Checker and Enable RX
Generator selected.

X-Ref Target - Figure 2-11

Figure 2-11: Test Setup and Payload Statistics Screen – Raw Data RX Only

UG882_c2_11_010612

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 23
UG882 (v1.2) August 3, 2012

TRD Demonstration Setup

Note: If Enable Loopback is selected, then Enable TX Checker and Enable RX
Generator options are not available to the user. If Enable TX Checker is selected, then
the Enable Loopback option is not available to the user. If Enable RX Generator is
selected, then the Enable Loopback option is not available to the user. The Enable TX
Checker and Enable RX Generator options can be selected simultaneously. For both
raw data paths, all configuration options should be selected before clicking Start Test.
Configuration options that a user changes while a test is running are not taken into account.

System Status

Click the System Status tab to view the system status screen (see Figure 2-13). This
screen shows the throughput numbers reported by the DMA engines for raw data
Path0 and the performance monitor on the transaction layer of the Kintex-7 FPGA. For
more details on the System Status window, refer to Figure 3-10.

X-Ref Target - Figure 2-12

Figure 2-12: Test Setup and Payload Statistics Screen – Raw Data TX and RX

UG882_c2_12_010612

http://www.xilinx.com

24 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Chapter 2: Getting Started

Transaction Statistics

Click the PCIe Statistics tab (Figure 2-14) to view the PCIe transaction statistics
screen. This screen plots the data bus utilization statistics on the AXI4-Stream
interface. After the base TRD has run successfully, close the application GUI. Wait for
the drivers to be removed, and then proceed to Shutting Down the System, page 25.

X-Ref Target - Figure 2-13

Figure 2-13: System Status

UG882_c2_13_010612

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 25
UG882 (v1.2) August 3, 2012

Shutting Down the System

Shutting Down the System
Before the PC system running Linux OS is shut down, follow these steps:

1. Unmount the USB flash drive. To unmount the drive, right-click the USB flash drive
icon and select Safely Remove Drive.

Caution! If the USB flash drive is not unmounted, files might become corrupted or the kernel
might crash

2. Hold down the ALT key and select Live System User > Power off option to shut
down the system. If the ALT key is not held down, only the Suspend option is
available. The system slowly shuts down all processes.

Note: Any files copied or icons created will not be present after the next Fedora 16 Live DVD boot.

X-Ref Target - Figure 2-14

Figure 2-14: Transaction Statistics

UG882_c2_14_010612

http://www.xilinx.com

26 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Chapter 2: Getting Started

Rebuilding the Base TRD
The configuring_kc705 folder provides the BIT and MCS files for the Base TRD with
the PCIe link configured as x4 at a 5 Gb/s link rate (Gen2) and x8 at a 2.5 Gb/s link rate
(Gen1). They can be used to reprogram the KC705 board. Programming the KC705 board
with the design, where the PCIe link is configured as x8 at a 2.5 Gb/s link rate requires
driver changes for the Base TRD to run successfully. Refer to Hardware and Software
Modifications, page 69 for details.

The designs can also be re-implemented using the ISE or Vivado™ tools. Before running
any command line scripts, refer to the “Platform-Specific Installation Instructions” section
in UG798, Xilinx Design Tools: Installation and Licensing Guide [Ref 2] to learn how to set the
appropriate environment variables for the operating system. All scripts mentioned in this
user guide assume the XILINX environment variables have been set.

Note: The development machine does not have to be the hardware test machine with the PCIe slots
used to run the Base TRD.

Copy the k7_pcie_dma_ddr3_base files to the PC with the ISE or Vivado tools installed.

The LogiCORE™ IP blocks required for the Base TRD are shipped as a part of the package.
These cores and netlists are located in the k7_pcie_dma_ddr3_base/design/
ip_cores directory:

• pcie

• fifo

• axi_ic

The MIG IP core cannot be delivered as a part of the Base TRD source, because customers
have to accept a license agreement for the Micron simulation models. These models are
used when simulating the Base TRD. Users must generate the MIG IP core using the ISE
CORE Generator tool before trying to simulate or implement the Base TRD with the ISE
tools.

For users of the Vivado tools, the IP Catalog project files are in the
k7_pcie_dma_ddr3_base/design/ip_catalog directory, and the IP cores will be
generated automatically when the synthesis step is initiated.

Generating the MIG IP Core through CORE Generator Tool
1. Open a terminal window (Linux) or an ISE Design Suite Command Prompt

(Windows).

2. Navigate to k7_pcie_dma_ddr3_base/design/ip_cores/mig (this directory
has mig.xco, mig.prj, golden_kc705_base_trd.ucf and coregen.cgp files).

3. Invoke the CORE Generator tool:

$ coregen

4. In the CORE Generator tool, click File > Open project, and select coregen project
file coregen.cgp.

5. Double click Instance Name mig_7x (Figure 2-15). This will pop up the Memory
Interface Generator GUI with the configuration defined by mig.xco and mig.prj
files.

6. Click Next until the Pin Selection for Controller 0 page is showing. Here, the pin
assignments for the KC705 board will be automatically loaded. Hit the Validate

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 27
UG882 (v1.2) August 3, 2012

Rebuilding the Base TRD

button and then OK for the pop-up window that appears afterward. Then click Next to
go on.

Note: The version you see in Figure 2-15 might not be the version on your screen.

7. Click Next until the Micron Tech Inc Simulation Model License Agreement page.
Select Accept and Click Next. This selection will generate the memory models
required for simulation.

8. In the following page click Next. Then click Generate to create the MIG IP core.

9. Close the Readme Notes Window and then the CORE Generator tool GUI.

Additionally, a golden set of XCO files are also provided under the
k7_pcie_dma_ddr3_base/design/ip_cores/reference directory so that the cores
can be regenerated, if desired.

To regenerate the core, copy mig.xco and mig.prj from the design/ip_cores/
reference directory.

Implementing the Design Using Command Line Options
1. Open a terminal window (Linux) or an ISE Design Suite Command Prompt

(Windows).

2. Navigate to k7_pcie_dma_ddr3_base/design/implement directory.

X-Ref Target - Figure 2-15

Figure 2-15: CORE Generator Tool GUI to Generate the MIG IP Core

UG882_c2_15_010612

http://www.xilinx.com

28 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Chapter 2: Getting Started

3. At the command line of a terminal window (Linux) or ISE Design Suite Command
Prompt (Windows), use one of these commands to invoke the ISE software tools and
produce a BIT file and an MCS file in the results folder for downloading to the KC705
board:

$ source implement.sh x4 gen2 (for Linux)

$ source implement.sh x8 gen1 (for Linux)

$ implement.bat -lanemode x4gen2 (for Windows)

$ implement.bat -lanemode x8gen1 (for Windows)

To view other options available through the implement script, run these commands:

$ source implement.sh -help (for Linux)

$ implement.bat -help (for Windows)

Implementing the Design Using the PlanAhead Design Tool

Base TRD with PCIe Configured as x4 at a 5 Gb/s Link Rate

1. Open a terminal window (Linux) or an ISE Design Suite Command Prompt
(Windows).

2. For PlanAhead™ design tool flow for Windows and Linux, navigate to design/
implement/planahead_flow_x4gen2.

3. Run the following command to invoke the PlanAhead design tool GUI. The design
with x4 gen2 PCIe configuration is loaded:

$ launch_pa_x4gen2.bat

4. Click Synthesize in the Project Manager window. A window with message
Synthesis Completed Successfully appears after XST generates a design netlist. Close
the message window.

5. Click Implement in the Project Manager window. A window with the message
Implementation Completed Successfully appears after translate, map and par
processes are done. Close the message window.

6. Click Program & Debug. Click Generate Bitstream. An options window
appear.s In the column next to the -f field, browse to directory design/implement
and select bitgen_options.ut. Click OK to generate bitstream. A window with the
message Generate Bitstream Completed Successfully appears at the end of
this process and a design bit file is available in design/implement/
planahead_flow_x4gen2/planAhead_run_1/
k7_pcie_dma_ddr3_base_x4gen2.runs/impl_1.

7. Close the PlanAhead design tool GUI.

8. Run the following command to generate an MCS file:

$ genprom.bat (for Windows)

$./genprom.sh (for Linux)

A promgen file is available in design/implement/planahead_flow_x4gen2.

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 29
UG882 (v1.2) August 3, 2012

Rebuilding the Base TRD

Base TRD with PCIe Configured as x8 at a 2.5 Gb/s Link Rate

1. Open a terminal window (Linux) or an ISE Design Suite Command Prompt
(Windows).

2. Navigate to design/implement/planahead_flow_x8gen1.

3. Run the following command to invoke the PlanAhead design tool GUI. The design
with x8gen1 PCIe configuration is loaded:

$ launch_pa_x8gen1.bat

4. Click Synthesize in the Project Manager window. A window with message
Synthesis Completed Successfully appears after XST generates a design netlist. Close
the message window.

5. Click Implement in the Project Manager window. A window with message
Implementation Completed Successfully appears after translate, map and par
processes are done. Close the message window.

6. Click Program & Debug. Click Generate Bitstream. An options window
appears. In the column next to the -f field, browse to directory design/implement
and select bitgen_options.ut. Click OK to generate bitstream. A window with
message Generate Bitstream Completed Successfully appears at the end of
this process and a design bit file will be available in design/implement/
planahead_flow_x8gen1/planAhead_run_1/
k7_pcie_dma_ddr3_base_x8gen1.runs/impl_1.

7. Close the PlanAhead design tool GUI.

8. Run the following command to generate an MCS file:

$ genprom.bat (for Windows)

$./genprom.sh (for Linux)

A promgen file will be available in design/implement/
planahead_flow_x8gen1.

Note: If the configuration width selected is x8 gen1, driver changes are required for the Base
TRD to run successfully. Refer to Hardware and Software Modifications, page 69 for details.

Implementing the Design Using the Vivado Tools

Base TRD with PCIe Configured as x4 at a 5 Gb/s Link Rate

1. Open a terminal window (Linux) or an ISE Design Suite Command Prompt
(Windows).

2. For the Vivado™ design tools flow for Windows and Linux, navigate to design/
implement/vivado_flow_x4gen2.

3. Run the following command to invoke the Vivado design tool GUI. The design with x4
gen2 PCIe configuration is loaded:

$ launch_x4gen2.bat

4. Click Run Synthesis in the Project Manager window. A window with the message
Synthesis Completed Successfully appears after the Vivado tools generate a design
netlist. Close the message window.

5. Click Run Implementation in the Project Manager window. A window with the
message Implementation Completed Successfully appears after the mapping and
placement and routing processes are done. Close the message window.

http://www.xilinx.com

30 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Chapter 2: Getting Started

6. Click Generate Bitstream. A window with the message Generate Bitstream
Completed Successfully appears at the end of this process and a design bit file is
available in design/implement/vivado_flow_x4gen2/vivado_proj_1/
k7_pcie_dma_ddr3_base_x4gen2.runs/impl_1.

7. Close the Vivado design tools GUI.

8. Run the following command to generate an MCS file:

$ genprom.bat (for Windows)

$./genprom.sh (for Linux)

A promgen file will be available in design/implement/vivado_flow_x4gen2.

Base TRD with PCIe Configured as x8 at a 2.5 Gb/s Link Rate

1. Open a terminal window (Linux) or an ISE Design Suite Command Prompt
(Windows).

2. Navigate to design/implement/vivado_flow_x8gen1.

3. Run the following command to invoke the Vivado design tools GUI. The design with
x8gen1 PCIe configuration is loaded:

$ launch_x8gen1.bat

4. Click Run Synthesis in the Project Manager window. A window with the message
Synthesis Completed Successfully appears after the Vivado tools generate a design
netlist. Close the message window.

5. Click Run Implementation in the Project Manager window. A window with the
message Implementation Completed Successfully appears after mapping and
placement and routing processes are done. Close the message window.

6. Click Generate Bitstream. A window with the message Generate Bitstream
Completed Successfully appears at the end of this process and a design bit file is
available in design/implement/vivado_flow_x8gen1/vivado_proj_1/
k7_pcie_dma_ddr3_base_x8gen1.runs/impl_1.

7. Close the Vivado design tools GUI.

8. Run the following command to generate an MCS file:

$ genprom.bat (for Windows)

$./genprom.sh (for Linux)

A promgen file will be available in design/implement/vivado_flow_x8gen1.

Note: If the configuration width selected is x8 gen1, driver changes are required for the Base TRD
to run successfully. Refer to Hardware and Software Modifications, page 69 for details.

Reprogramming the Base TRD
The KC705 board is shipped preprogrammed with the Base TRD, where the PCIe link is
configured as x4 at a 5 Gb/s link rate. This procedure shows how to return the KC705
board to its original condition after another user has programmed it for a different
operation or as a training aid for users to program their boards. The PCIe operation
requires the use of the BPI Linear Flash mode of the KC705 board. This is the only
configuration option that meets the strict programming time of PCI Express. Refer to the
7 Series FPGAs Integrated Block for PCI Express User Guide for more information on PCIe
[Ref 4]

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 31
UG882 (v1.2) August 3, 2012

Reprogramming the Base TRD

Configuration Requirements
1. Check the KC705 board switch and jumper settings as shown in Table 2-1 and

Figure 2-1. Connect the micro USB cable and use the wall power adapter to provide
12V power to the 6-pin connector as shown in Figure 2-15.

2. Copy the k7_pcie_dma_ddr3_base files to the PC with Xilinx programming tools
or the ISE or Vivado Design Suites installed.

3. Open a terminal window (Linux) or an ISE Design Suite Command Prompt
(Windows).

4. Navigate to the k7_pcie_dma_ddr3_base/configuring_kc705 directory.

5. Execute the FPGA programming script at the command prompt. This operation takes
approximately 500 to 800 seconds to complete.

$ kc705program.bat (for Windows)

$ impact -batch kc705program.cmd (for Linux)

When complete, the “Programmed Successfully” message is displayed as shown in
Figure 2-17. Remove the power connector and carefully remove the micro USB cable.
The Kintex-7 Base TRD is now programmed into the BPI Linear Flash and will
automatically configure at power up.

X-Ref Target - Figure 2-16

Figure 2-16: Cable Installation for KC705 Board Programming

UG882_c2_16_011112

http://www.xilinx.com

32 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Chapter 2: Getting Started

If the design has been rebuilt according to the instructions in Rebuilding the Base TRD,
page 26, navigate to the k7_pcie_dma_ddr3_base/design/implement directory.
The BIT and MCS files generated during implementation and the scripts to program
the KC705 board are located in the results directory.

Navigate to the results directory and run the FPGA programming script at the
command prompt to configure the KC705 board with the design built in the
implement folder.

For the designs rebuilt using the PlanAhead design tool, the MCS files and the FPGA
programming scripts are available at k7_pcie_dma_ddr3_base/design/
implement/planahead_flow_x4gen2 and k7_pcie_dma_ddr3_base/
design/implement/planahead_flow_x8gen1.

For the designs rebuilt using the Vivado design tools, the MCS files and the FPGA
programming scripts are available at k7_pcie_dma_ddr3_base/design/
implement/vivado_flow_x4gen2 and k7_pcie_dma_ddr3_base/design/
implement/vivado_flow_x8gen1.

Simulation
The out-of-box simulation environment consists of the design under test (DUT) connected
to the Kintex-7 FPGA Root Port Model for PCI Express. This simulation environment
demonstrates the basic functionality of the Base TRD through various test cases. The
out-of-box simulation environment covers these traffic flows:

X-Ref Target - Figure 2-17

Figure 2-17: Programming the KC05 Board Flash (Windows 7 OS)

UG882_c2_17_122011

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 33
UG882 (v1.2) August 3, 2012

Simulation

• Raw Data Transmit: Raw data traffic from the Root Port Model through the Endpoint
PCIe, Packet DMA, and DDR3 memory to the Loopback module

• Raw Data Receive: Raw data traffic from the Loopback module through the DDR3
memory, Packet DMA, and Endpoint PCIe to the Root Port Model

The Root Port Model for PCI Express is a limited test bench environment that provides a
test program interface. The purpose of the Root Port Model is to provide a source
mechanism for generating downstream PCI Express traffic to simulate the DUT and a
destination mechanism for receiving upstream PCI Express traffic from the DUT in a
simulation environment.

The out-of-box simulation environment (see Figure 2-18) consists of:

• Root Port Model for PCI Express connected to the DUT

• Transaction Layer Packet (TLP) generation tasks for various programming operations

• Test cases to generate different traffic scenarios

The simulation environment creates log files during simulation. These log files contain a
detailed record of every TLP that was received and transmitted by the Root Port Model.

Simulating the Design
The out-of-box simulation environment is built for the ModelSim simulator. To run the
simulation, execute one of the listed scripts at the command prompt. Make sure to compile
the required libraries and set the environment variables as per the ModelSim simulator
before running the script. Refer to the UG626, Synthesis and Simulation Design Guide, which
provides information on how to run simulations with different simulators [Ref 5].

• Base TRD with the PCIe link configured as x4 at 5 Gb/s: simulate_mti_x4gen2
found in the k7_pcie_dma_ddr3_base/design/sim/mti directory

• Base TRD with the PCIe link configured as x8 at 2.5 Gb/s: simulate_mti_x8gen1
found in the k7_pcie_dma_ddr3_base/design/sim/mti directory

Note: Before running the simulation script, make sure to generate the MIG core through the CORE
Generator tool, as described in Rebuilding the Base TRD, page 26.

X-Ref Target - Figure 2-18

Figure 2-18: Out-of-Box Simulation Overview

Kintex-7 FPGA
PCIe_DMA_DDR3

Design

Kintex-7 FPGA
PCI Express

Root Port
Model

DDR3
Memory
Model

PCIe Link
x4 Gen2/
x8 Gen1

Tasks For
TLP Generation

TEST

Command Line or
User Defined

PARAMETERS

UG882_c2_18_010512

http://www.xilinx.com

34 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Chapter 2: Getting Started

User-Controlled Macros

The simulation environment allows the user to define macros that control DUT
configuration. These values can be changed in the user_defines.v file.

Test Selection

For the raw data path, fixed length packets of 1024 bytes are generated.

Table 2-3 describes the various tests provided by the out-of-box simulation environment.

The name of the test to be run can be specified on the command line while invoking
relevant simulators in the provided scripts. By default, the simulation script file specifies
the basic test to be run using this syntax:

+TESTNAME=basic_test

The test selection can be changed by specifying a different test case as specified in
Table 2-3.

Table 2-2: User-Controlled Macro Descriptions

Macro Name Default Value Description

CH0 Defined Enables raw data Path0 initialization and traffic flow.

CH1 Defined Enables raw data Path1 initialization and traffic flow.

DETAILED_LOG Not defined Enables a detailed log of each transaction.

Table 2-3: Test Description

Test Name Description

basic_test Basic test. This test runs six packets for each DMA channel. One buffer
descriptor defines one full packet in this test.

packet_spanning Packet spanning multiple descriptors. This test spans a packet across two
buffer descriptors. It runs six packets for each DMA channel.

test_interrupts Interrupt test. This test sets the interrupt bit in the descriptor and enables
the interrupt registers. This test also shows interrupt handling by
acknowledging relevant registers.

Note: Only one channel should be enabled for this test.

dma_disable DMA disable test. This test shows the DMA disable operation sequence
on a DMA channel.

break_loop Enable checker and generator in hardware and disable loopback. This test
shows the receive path running independent of the transmit path. The
data source for the receive path is the generator, not the looped back
transmit data.

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 35
UG882 (v1.2) August 3, 2012

Chapter 3

Functional Description

This chapter describes the hardware design and software driver components. It also
describes how the data and control information flow through the various connected IPs.

Hardware Architecture
Figure 3-1 provides a detailed block level overview of the TRD. The base system
components and the applications components enable data flow to/from the host memory
at high data rates.

X-Ref Target - Figure 3-1

Figure 3-1: Detailed Design Block Diagram

UG882_c3_01_030812

Multiport Virtual FIFO

Multi-channel
DMA for PCIe DDR3

C
ha

nn
el

-0
C

2S
S

2C
C

ha
nn

el
-1

S
2C

C
2S

64 x
1600 Mb/s

P
C

Ie
 x

4G
en

2/
x8

G
en

1
Li

nk

Interface Blocks in FPGA Third Party IPXilinx IP On BoardCustom Logic

Transmit Receive

Lo
op

ba
ck

Lo
op

ba
ck

Raw Packet Data Block

Generator

Checker

Raw Packet Data Block

Generator

Checker

User Space
Registers

Target Interface
AXI Master

256 x
200 MHz

64
 x

 2
50

 M
H

z

64 x
250 MHz

64 x
250 MHz

64 x
156.25 MHz

64 x
156.25 MHz

Performance
Monitor for PCIe

Packetized VFIFO
Controller

ADDRESS
MANAGERP

R
E

V
IE

W
F

IF
O

P
R

E
V

IE
W

F
IF

O

Packetized VFIFO
Controller

ADDRESS
MANAGERP

R
E

V
IE

W
F

IF
O

P
R

E
V

IE
W

F
IF

O
Packetized VFIFO

Controller

ADDRESS
MANAGERP

R
E

V
IE

W
F

IF
O

P
R

E
V

IE
W

F
IF

O

Packetized VFIFO
Controller

ADDRESS
MANAGERP

R
E

V
IE

W
F

IF
O

P
R

E
V

IE
W

F
IF

O

G
T

X
 T

ra
ns

ce
iv

er

In
te

gr
at

ed
 E

nd
po

in
t B

lo
ck

 fo
r

P
C

I E
xp

re
ss

A
X

I-
S

T
 B

as
ic

 W
ra

pp
er

AXI
MIG

D
D

R
3

I/OAXI
Interconnect

SI SI

SI SI

M
I

http://www.xilinx.com

36 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Chapter 3: Functional Description

The hardware architecture is detailed under these sections:

• Base System Components describes the Kintex-7 FPGA integrated Endpoint block for
PCI Express, DMA, and Multiport Virtual FIFO

• Application Components describes a simple packet data generator.

Base System Components
PCI Express is a high-speed serial protocol that allows transfer of data between host
systems and Endpoint cards. To efficiently use the processor bandwidth, a bus mastering
scatter-gather DMA controller is used to push and pull data from the system memory. All
data to and from the system is stored in the DDR3 memory through a Multiport Virtual
FIFO abstraction layer before interacting with the user application.

PCI Express

The Kintex-7 FPGA Integrated Block for PCI Express provides a wrapper around the
integrated block in the FPGA. The integrated block is compliant with the PCI Express v2.0
specification. It supports x1, x2, x4, x8 lane widths operating at 2.5 Gb/s (Gen1) or 5 Gb/s
(Gen2) line rate per direction. The wrapper combines the Kintex-7 FPGA Integrated Block
for PCI Express with transceivers, clocking, and reset logic to provide an industry standard
AXI4-Stream interface as the user interface.

For details on the Kintex-7 FPGA integrated Endpoint block for PCI Express, refer to
UG477, 7 Series FPGAs Integrated Block for PCI Express User Guide [Ref 4].

Performance Monitor for PCI Express

The monitor block snoops for PCIe® transactions on the AXI4-Stream interface ports and
keeps track of utilization. A timer within the block counts out the clocks until one second
has elapsed, during which time several counters have collected data about the usage of the
transaction layer. Table 3-1 shows the ports on the monitor.
\

Table 3-1: Monitor Ports for PCI Express

Port Name Type Description

reset Input Synchronous reset

clk Input 250 MHz clock

Transmit Ports on the AXI4-Stream Interface

s_axis_tx_tdata[63:0] Input Data to be transmitted via PCIe link

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 37
UG882 (v1.2) August 3, 2012

Hardware Architecture

s_axis_tx_tkeep[7:0] The transmit data strobe is used to determine which
data bytes are valid on s_axis_tx_tdata during a given
beat (this signal is valid only if s_axis_tx_tvalid and
s_axis_tx_tready are both asserted).

Bit 0 corresponds to the least significant byte on
s_axis_tx_tdata and bit 7 corresponds to the most
significant byte, for example:

• s_axis_tx_tkeep[0] == 1b,

• s_axis_tx_tdata[7:0] is valid.

• s_axis_tx_tkeep[7] == 0b,

• s_axis_tx_tdata[63:56] is not valid.

• When s_axis tx_tlast is not asserted, the only
valid value is 0xFF.

• When s_axis_tx_tlast is asserted, valid values
are 0x0F and 0xFF.

s_axis_tx_tlast Input End of frame indicator on transmit packets. Valid only
along with assertion of s_axis_tx_tvalid.

s_axis_tx_tvalid Input Source ready to provide transmit data. Indicates that
the DMA is presenting valid data on s_axis_tx_tdata.

s_axis_tx_tuser[3]
(src_dsc)

Input Source discontinue on a transmit packet. Can be
asserted any time starting on the first cycle after SOF.
s_axis_tx_tlast should be asserted along with
s_axis_tx_tuser[3] assertion.

s_axis_tx_tready Input Destination ready for transmit. Indicates that the core is
ready to accept data on s_axis_tx_tdata. The
simultaneous assertion of s_axis_tx_tvalid and
s_axis_tx_tready marks the successful transfer of one
data beat on s_axis_tx_tdata.

Receive Ports on the AXI4-Stream Interface

m_axis_rx_tdata[63:0] Input Data received on the PCIe link. Valid only if
m_axis_rx_tvalid is also asserted.

m_axis_rx_tkeep[7:0] Input The receive data keep signal is used to determine which
data bytes are valid on m_axis_rx_tdata[63:0] during a
given beat (this signal is valid only when
m_axis_rx_tvalid and m_axis_rx_tready are both
asserted). Bit 0 corresponds to the least significant byte
on m_axis_rx_tdata and bit 7 corresponds to the most
significant byte.

When m_axis rx_tlast is not asserted, this signal can be
ignored.

When m_axis_rx_tlast is asserted, valid values are
0x0F and 0xFF.

m_axis_rx_tlast Input End of frame indicator for received packet. Valid only if
m_axis_rx_tvalid is also asserted.

Table 3-1: Monitor Ports for PCI Express (Cont’d)

Port Name Type Description

http://www.xilinx.com

38 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Chapter 3: Functional Description

Note: Start of packet is derived based on the signal values of source valid, destination ready and
end of packet indicator. The clock cycle after end of packet is deasserted and source valid is asserted
indicates start of a new packet.

Four counters collect information on the transactions on the AXI4-Stream interface:

• TX Byte Count. This counter counts bytes transferred when the s_axis_tx_tvalid and
s_axis_tx_tready signals are asserted between the Packet DMA and the
Kintex-7 FPGA Integrated Block for PCI Express. This value indicates the raw
utilization of the PCIe transaction layer in the transmit direction, including overhead
such as headers and non-payload data such as register access.

• RX Byte Count. This counter counts bytes transferred when the m_axis_rx_tvalid and
m_axis_rx_tready signals are asserted between the Packet DMA and the
Kintex-7 FPGA Integrated Block for PCI Express. This value indicates the raw
utilization of the PCIe transaction layer in the receive direction, including overhead
such as headers and non-payload data such as register access.

• TX Payload Count. This counter counts all memory writes and completions in the
transmit direction from the Packet DMA to the host. This value indicates how much
traffic on the PCIe transaction layer is from data, which includes the DMA buffer
descriptor updates, completions for register reads, and the packet data moving from
the user application to the host.

• RX Payload Count. This counter counts all memory writes and completions in the
receive direction from the host to the DMA. This value indicates how much traffic on
the PCIe transaction layer is from data, which includes the host writing to internal
registers in the hardware design, completions for buffer description fetches, and the
packet data moving from the host to user application.

The actual packet payload by itself is not reported by the performance monitor. This value
can be read from the DMA register space. The method of taking performance snapshots is
similar to the Northwest Logic DMA performance monitor (refer to the Northwest Logic
DMA Back-End Core User Guide and Northwest Logic DMA AXI DMA Back-End Core User
Guide, available in the k7_pcie_dma_ddr3_base/design/ipcores/dma/doc
directory). The byte counts are truncated to a four-byte resolution, and the last two bits of
the register indicate the sampling period. The last two bits transition every second from 00
to 01 to 10 to 11. The software polls the performance register every second. If the

m_axis_rx_tvalid Input Source ready to provide receive data. Indicates that the
core is presenting valid data on m_axis_rx_tdata.

m_axis_rx_tready Input Destination ready for receive. Indicates that the DMA is
ready to accept data on m_axis_rx_tdata. The
simultaneous assertion of m_axis_rx_tvalid and
m_axis_rx_tready marks the successful transfer of one
data beat on m_axis_rx_tdata.

Byte Count Ports

tx_byte_count[31:0] Output Raw transmit byte count

rx_byte_count[31:0] Output Raw receive byte count

tx_payload_count[31:0] Output Transmit payload byte count

rx_payload_count[31:0] Output Receive payload byte count

Table 3-1: Monitor Ports for PCI Express (Cont’d)

Port Name Type Description

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 39
UG882 (v1.2) August 3, 2012

Hardware Architecture

sampling bits are the same as the previous read, then the software needs to discard the
second read and try again. When the one-second timer expires, the new byte counts are
loaded into the registers, overwriting the previous values.

Scatter Gather Packet DMA

The scatter-gather Packet DMA IP is provided by Northwest Logic, a Xilinx third-party
alliance partner. The Packet DMA is configured to support simultaneous operation of two
user applications. This involves four DMA channels: two system-to-card (S2C) or transmit
channels and two card-to-system (C2S) or receive channels. The DMA controller requires a
64 KB register space mapped to BAR0. All DMA registers are mapped to BAR0 from
0x0000 to 0x7FFF. The address range from 0x8000 to 0xFFFF is available to the user via
this interface. Each DMA channel has its own set of independent registers. Registers
specific to this TRD are described in Appendix B, Register Description. Further details of
various registers can be obtained from the Northwest Logic DMA Back-End Core User Guide,
available in the k7_pcie_dma_ddr3_base/design/ipcores/dma/doc directory.

The front end of DMA interfaces to the AXI4-Stream interface. The back end of the DMA
provides an AXI4-Stream interface as well which connects to the ports on Virtual FIFO.
Further details of the signal definitions can be obtained from the Northwest Logic AXI DMA
Back-End Core User Guide, available in the k7_pcie_dma_ddr3_base/design/
ipcores/dma/doc directory.

Scatter Gather Operation

The term scatter gather refers to the ability to write packet data segments into different
memory locations and gather data segments from different memory locations to build a
packet. This allows for efficient memory utilization because a packet does not need to be
stored in physically contiguous locations. Scatter gather requires a common memory
resident data structure that holds the list of DMA operations to be performed. DMA
operations are organized as a linked list of buffer descriptors. A buffer descriptor describes
a data buffer. Each buffer descriptor is eight doublewords in size (a doubleword is 4 bytes),
which is a total of 32 bytes. The DMA operation implements buffer descriptor chaining,
which allows a packet to be described by more than one buffer descriptor.

Figure 3-2 shows the buffer descriptor layout for S2C and C2S directions.

http://www.xilinx.com

40 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Chapter 3: Functional Description

The descriptor fields are described in Table 3-2.

X-Ref Target - Figure 3-2

Figure 3-2: S2C Buffer Descriptor and C2S Buffer Descriptor Layout

ByteCount[19:0]0 0 0
E
R
R

0
S
H
T

C
M
P

0 Rsvd

User Control [31:0]

User Control [63:32]

Card Address – (Reserved)

ByteCount[19:0]
S
O
P

E
O
P

0 0 0
Ir
q
Er

Ir
q
C

0 Rsvd

System Address [31:0]

System Address [63:32]

NextDescPtr[31:5],5'b00000

ByteCount[19:0]
S
O
P

E
O
P

0
E
R
R

Hi
0

S
H
T

C
M
P

L
0

Rsvd

User Status [31:0]

User Status [63:32]

Card Address – (Reserved)

RsvdByteCount[19:0]0 0 0 0 0
Ir
q
Er

Ir
q
C

0 Rsvd

System Address [31:0]

System Address [63:32]

NextDescPtr[31:5],5'b00000

UG882_c3_02_121711

Table 3-2: Buffer Descriptor Fields

Descriptor Fields Functional Description

SOP Start of packet. In S2C direction, indicates to the DMA the start
of a new packet. In C2S, DMA updates this field to indicate to
software start of a new packet.

EOP End of packet

In S2C direction, indicates to the DMA the end of current packet.
In C2S, DMA updates this field to indicate to software end of the
current packet.

ERR Error

This is set by DMA on descriptor update to indicate error while
executing that descriptor

SHT Short

Set when the descriptor completed with a byte count less than
the requested byte count. This is common for C2S descriptors
having EOP status set but should be analyzed when set for S2C
descriptors.

CMP Complete

This field is updated by the DMA to indicate to the software
completion of operation associated with that descriptor.

Hi 0 User Status High is zero

Applicable only to C2S descriptors - this is set to indicate Users
Status [63:32] = 0

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 41
UG882 (v1.2) August 3, 2012

Hardware Architecture

This field points to the next descriptor in the linked list. All descriptors are 32-byte aligned.

Packet Transmission

The software driver prepares a ring of descriptors in system memory and writes the start
and end addresses of the ring to the relevant S2C channel registers of the DMA. When
enabled, the DMA fetches the descriptor followed by the data buffer it points to. Data is
fetched from the host memory and made available to the user application through the
DMA S2C streaming interface.

L 0 User Status Low is zero

Applicable only to C2S descriptors - this is set to indicate User
Status [31:0] = 0

Irq Er Interrupt On Error

This bit indicates DMA to issue an interrupt when the descriptor
results in error

Irq C Interrupt on Completion

This bit indicates DMA to issue an interrupt when operation
associated with the descriptor is completed

ByteCount[19:0] Byte Count

In S2C direction, this indicates DMA the byte count queued up
for transmission.

In C2S direction, DMA updates this field to indicate the byte
count updated in system memory.

RsvdByteCount[19:0] Reserved Byte Count

In S2C direction, this is equivalent to the byte count queued up
for transmission.

In C2S direction, this indicates the data buffer size allocated - the
DMA might or might not utilize the entire buffer depending on
the packet size.

User Control/User Status User Control or Status Field (The use of this field is optional.)

In S2C direction, this is used to transport application specific
data to DMA. Setting of this field is not required by this
reference design.

In C2S direction, DMA can update application specific data in
this field.

Card Address Card Address Field

This is a reserved for Packet DMA

System Address System Address

This defines the system memory address where the buffer is to
be fetched from or written to.

NextDescPtr Next Descriptor Pointer

This field points to the next descriptor in the linked list. All
descriptors are 32-byte aligned.

Table 3-2: Buffer Descriptor Fields (Cont’d)

Descriptor Fields Functional Description

http://www.xilinx.com

42 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Chapter 3: Functional Description

The packet interface signals (for example, user control and the end of packet) are built from
the control fields in the descriptor. The information present in the user control field is made
available during the start of packet. The reference design does not use the user control
field.

To indicate data fetch completion corresponding to a particular descriptor, the DMA
engine updates the first doubleword of the descriptor by setting the complete bit of the
'Status and Byte Count field to 1. The software driver analyzes the complete bit field to free
up the buffer memory and reuse it for later transmit operations.

Figure 3-3 shows the system to card data transfer.

Note: Start of Packet is derived based on the signal values of source valid (s2c_tvalid), destination
ready (s2c_tready) and end of packet (s2c_tlast) indicator. The clock cycle after end of packet is
deasserted and source valid is asserted indicates start of a new frame.

Packet Reception

The software driver prepares a ring of descriptors with each descriptor pointing to an
empty buffer. It then programs the start and end addresses of the ring in the relevant C2S
DMA channel registers. The DMA reads the descriptors and waits for the user application
to provide data on the C2S streaming interface. When the user application provides data,
the DMA writes the data into one or more empty data buffers pointed to by the prefetched
descriptors. When a packet fragment is written to host memory, the DMA updates the
status fields of the descriptor. The c2s_tuser signal on the C2S interface is valid only during
c2s_tlast. Hence, when updating the EOP field, the DMA engine also needs to update the
User Status fields of the descriptor. In all other cases, the DMA updates only the Status and
Byte Count field. The completed bit in the updated status field indicates to the software
driver that data was received from the user application. When the software driver
processes the data, it frees the buffer and reuses it for later receive operations.

Figure 3-4 shows the card to system data transfer.

X-Ref Target - Figure 3-3

Figure 3-3: Data Transfer from System to Card

User Control [63:32]

User Control [31:0]

Complete=1

clk

Start of Packet

s2c_tuser

s2c_tdata

s2c_tvalid

s2c_tready

Data
Buffer

SOP=1

Next Descriptor

System Address [63:32]

System Address [31:0]

Control Flags & Count

Card Address

Status & ByteCount

Next Descriptor

System Address [63:32]

System Address [31:0]

Control Flags & Count

Card Address

User Control [63:32]

User Control [31:0]

Status & ByteCount

Complete=1

UG882_c3_03_010912

EOP=1

Data
Buffer

(Inferred)

s2c_tlast

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 43
UG882 (v1.2) August 3, 2012

Hardware Architecture

Note: Start of Packet is derived based on the signal values of source valid (c2s_tvalid), destination
ready (c2s_tready) and end of packet (c2s_tlast) indicator. The clock cycle after end of packet is
deasserted and source valid is asserted indicates start of a new frame.

The software periodically updates the end address register on the Transmit and Receive
DMA channels to ensure uninterrupted data flow to and from the DMA.

Multiport Virtual Packet FIFO

The Multiport Virtual Packet FIFO is built using LogiCORE™ IP MIG (Memory Interface
Controller) and LogiCORE IP AXI Interconnect. The Packetized VFIFO controller logic
around the IPs converts the external DDR3 memory into a multiport FIFO. Figure 3-5 is the
block level representation of Multiport Virtual Packet FIFO.

X-Ref Target - Figure 3-4

Figure 3-4: Data Transfer from Card to System

Complete=1

clk

Start of Packet

c2s_tuser

c2s_tdata

c2s_tvalid

c2s_tready

c2s_tlast

Data
Buffer

SOP=1

Next Descriptor

System Address [63:32]

System Address [31:0]

Control Flags & Count

Card Address

User Control [63:32]

User Control [31:0]

Status & ByteCount

Next Descriptor

System Address [63:32]

System Address [31:0]

Control Flags & Count

Card Address

User Control [63:32]

User Control [31:0]

Status & ByteCount

Complete=1

UG882_c3_04_011211

EOP=1

Data
Buffer

(Inferred)

http://www.xilinx.com

44 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Chapter 3: Functional Description

Multiport Memory Controller

The Memory Interface controller and the AXI Interconnect constitute the Multiport
Memory Controller. The LogiCORE IP MIG provides a single port with AXI4 interface.
Because this reference design supports two user applications, four ports are required on
Memory Controller—two ports for DMA to push data and user applications to pull data
and two ports for user application to push data and DMA to pull data. Using the AXI4
interconnect a single port Memory Controller can be converted into a multiport Memory
Controller. In this design AXI4 interconnect is used in a 4x1 configuration. The DMA
engines and the user applications are 4 masters to drive 4 slave interfaces (SI). The master

X-Ref Target - Figure 3-5

Figure 3-5: Virtual Packet FIFO

User
Application

User
Application

UG882_c3_05_121811

Multiport Memory
Controller

P
ac

ke
tiz

ed
V

F
IF

O
co

nt
ro

lle
r

P
ac

ke
tiz

ed
V

F
IF

O
co

nt
ro

lle
r

P
ac

ke
tiz

ed
V

F
IF

O
co

nt
ro

lle
r

P
ac

ke
tiz

ed
V

F
IF

O
co

nt
ro

lle
r

Virtual Packet FIFO

Port 2 Port 3 Port 0 Port 1

C2S1S2C1 S2C0 C2S0

64 bit @
250 MHz

64 bit @ 200 MHz

256 bit @ 200 MHz

64 bit @
200 MHz

AXI4
Interconnect

DDR3 I/O

Memory Interface
Generator

AXI4 Slave

MI

SISISISI

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 45
UG882 (v1.2) August 3, 2012

Hardware Architecture

interface (MI) on the Interconnect drives the single port Memory Controller Interface
which is a slave.

Packetized VFIFO Controller

Figure 3-6 provides a block level overview of the Packetized VFIFO controller.

The DDR3 memory is required to store packets (size ranging from 64B to 32 KB). Because
the interface width on DDR3 is 64-bits, there are no extra bits to store control information.
Therefore, the reference design needs a way to find the start and end of the packet and
valid data bytes when data is read out of the DDR3. Inserting a control word in a data
packet before it is written into the DDR3 and using the control word when data is read out

X-Ref Target - Figure 3-6

Figure 3-6: Packetized VFIFO Controller

UG882_c3_06_010512

Address
Manager

CW
INSERT

CW
STRIP

Virtual FIFO
Controller

Packetizer

Packetized VFIFO Controller

AXI-ST
(Write)

AXI-ST
(Read)

AXI-MM Interface to
LogiCORE AXI-Interconnect

W RAW, AR, BRESP

Control
Information

200 MHz timing domain 250 MHz timing domain

AXI-ST
Minimal

AXI-ST
Minimal

Ingress
FIFO

Egress
FIFO

A
S

Y
N

C
F

IF
O

A
S

Y
N

C
F

IF
O

http://www.xilinx.com

46 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Chapter 3: Functional Description

of the DDR3 is a simple scheme to determine packet delineations. Using the Packetizer
logic does not have a large performance impact and avoids use of a store and forward
scheme.

The input and output interfaces on Packetized VFIFO controller are AXI-Stream
compliant. The DMA engines and the user application interface with this module. On the
write port, the packet length should be available with the first data beat to enable control
word insertion. This control word is discarded before the packet is made available on the
read port.

The Virtual FIFO Controller comprises of three modules Ingress FIFO, Egress FIFO and
address manager.

The address manager implements the addressing scheme to manage DDR3 as FIFO. Users
have control to set the DDR3 start and end address boundary to be used as FIFO. The users
can also set the burst size to be used on write and read AXI-MM interfaces. These values
are guidance to what the maximum burst size could be. For example, say burst size is
programmed as 256 for both read and write interfaces. Effort is made to operate at this
burst size, but a sub-optimal burst (lesser than 256) can be issued based on timeout in lean
traffic scenarios

(Refer to Memory Controller Registers in Appendix B to set the start and end addresses
and burst size.)

The Ingress and Egress FIFO blocks communicate to the AXI Interconnect block based on
the control signals from the address manager.

The Ingress FIFO block handles the write data and is responsible for driving the write
interface of AXI-MM. The asynchronous preview FIFO in this block helps with clock
domain crossing. It also allows storing up enough data to create a transaction of write
burst size and then sending it to the AXI Interconnect.

The Egress FIFO block handles the read data and is responsible for draining the read data
interface of AXI-MM after a read command is issued and when read data is available. The
asynchronous preview FIFO in this block helps with clock domain crossing. It also allows
storing up enough data to store a transaction of read burst size received from AXI
Interconnect.

The preview FIFOs in the Ingress FIFO block and Egress FIFO block are generated using
the LogiCORE FIFO Generator IP with a data width of 64-bit and depth of 1024. The FIFOs
internally use Block RAMs.

Table 3-3 shows the signals on the Multiport Virtual Packet FIFO. The read and writes
interface signals and the user-specified register widths scale with the number of ports.

Table 3-3: Ports on the Packetized VFIFO Controller

Port Name Type Description

Write Interface

axi_str_wr_tlast Input Indicates end of a packet

axi_str_wr_tdata Input Data packets received from the DMA engines and User
Applications

axi_str_wr_tvalid Input Source is ready, and data is valid on the data bus

axi_str_wr_tready Output Destination is ready, and can receive data

axi_str_wr_tkeep Input Byte enables on data, qualified by tvalid. Can be deasserted
only when tlast is asserted

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 47
UG882 (v1.2) August 3, 2012

Hardware Architecture

axi_str_wr_aclk Input Clock for write transactions

axi_str_wr_tuser Input Length of the data packet is defined by this signal. This
information should be available on the first data beat of a
packet.

wr_reset_n Input User reset to the write port

Read Interface

axi_str_rd_tlast Output Indicates end of a packet

axi_str_rd_tdata Output Data transmitted to the DMA engines and User Applications

axi_str_rd_tvalid Output Source is ready, and data is valid on the data bus

axi_str_rd_tready Input Destination is ready, and can receive data

axi_str_rd_tkeep Output Byte enables on data, qualified by tvalid. Can be deasserted
only when tlast is asserted

axi_str_rd_aclk Input Clock for read transactions

axi_str_rd_tuser Output Length of the data packet is defined by this signal. This
information is available on the first data beat of a packet.

rd_reset_n Input User reset to the read port

User-Specified Registers

start_addr Input DDR3 start address boundary

end_addr Input DDR3 end address boundary

wrburst_size Input Write burst size on the AXI-MM interface to the LogiCOREIP
AXI Interconnect

rdburst_size Input Read burst size on the AXI-MM interface to the LogiCORE IP
AXI Interconnect

DDR3 Memory Interface

ddr_addr Output PHY signal

ddr_ba Output PHY signal

ddr_cas_n Output PHY signal

ddr_ck_p Output PHY signal

ddr_ck_n Output PHY signal

ddr_cke Output PHY signal

ddr_cs_n Output PHY signal

ddr_dm Output PHY signal

ddr_odt Output PHY signal

ddr_ras_n Output PHY signal

ddr_reset_n Output PHY signal

Table 3-3: Ports on the Packetized VFIFO Controller (Cont’d)

Port Name Type Description

http://www.xilinx.com

48 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Chapter 3: Functional Description

Application Components
This section describes the block that interfaces with the base components to support Raw
Packet Data flow. It is a simple application which can be replaced with any other
application protocol like XAUI or Aurora.

Raw Data Packet Path

The Raw Data application is an example of a data streaming protocol. Because the DMA
provides a packetized interface on its back end, a fixed length packet is defined on this
path, though the data itself does not have any packet annotations in the user space. The
fixed length is configurable through a register write (refer to Packet Length (0x9104) in
Appendix B and Packet Length (0x9204) in Appendix B for details).

The Raw Data Packet module implements a loopback function, a data checker function,
and a data generator function. The module enables specific functions depending on the
GUI configuration options selected by the user. On the transmit path, the data checker
verifies the data transmitted from the host system via the Packet DMA. On the receive
path, data can be sourced either by the data generator or transmit data can be looped back
and sent to the host system.

Based on user inputs, the driver programs user space registers to enable checker, enable
generator, or enable loopback (see Enable Generator (0x9100), Enable Loopback/Checker

ddr_we_n Output PHY signal

ddr_dq Inout PHY signal

ddr_dqs_p Inout PHY signal

ddr_dqs_n Inout PHY signal

sda Inout PHY signal

scl Output PHY signal

Other

calib_done Output DDR3 Memory calibration is complete

clk_ref_p Input 200 MHz differential clock

clk_ref_n Input 200 MHz differential clock

mcb_clk Output User interface 200 MHz clock for the LogiCORE IP MIG

mcb_rst Output User interface reset for the LogiCORE IP MIG

ddr3_fifo_empty Output Indicates the DDR3 FIFOs, Egress and Ingress preview FIFOs
are empty. Width of the signals is equal to the number of ports
on the Virtual Packet FIFO.

axi_ic_shim_rst_n Input This signal resets the AXI interconnect IP and AXI interface of
the MIG IP. The software verifies the DDR3 FIFO and preview
FIFOs are empty before issuing this reset.

user_reset Input This signal resets the MIG IP core. It is connected PCIe
Endpoint card reset (perst_n) driven by the PC motherboard.

Table 3-3: Ports on the Packetized VFIFO Controller (Cont’d)

Port Name Type Description

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 49
UG882 (v1.2) August 3, 2012

Hardware Architecture

(0x9108), Enable Generator (0x9200), Enable Loopback/Checker (0x9208) in Appendix B,
Register Description).

If the Enable Loopback bit is set, as soon as Virtual FIFO receive is ready, the block is ready
to accept data from the Virtual FIFO transmit. The data on the Virtual FIFO transmit is then
passed on to Virtual FIFO receive. This cycles the data from one port of the Virtual FIFO
back into another port (Port 0 to Port 1 and Port 2 to Port 3 as shown in Figure 3-5) with no
change to the data. In the loopback mode, data is not verified by the checker; the software
driver on the receive end checks for data integrity.

If the Enable Checker bit is set, as soon as data is valid on the Virtual FIFO transmit (Port 0
and 2 in Figure 3-5) each data byte received is checked against a fixed data pattern. If there
is a mismatch during a comparison, the data_mismatch signal is asserted. This signal can
be accessed through the register space (see Checker Status (0x910C) and Checker Status
(0x920C) in Appendix B).

If the Enable Generator bit is set and the Virtual FIFO receive is ready to accept data, the
data produced by the generator is passed to the Virtual FIFO (Port 1 and 3 in Figure 3-5).
The data from the generator also follows the same data pattern as the checker. The data
received and transmitted by the module is divided into packets. The first two bytes of each
packet define the length of packet. All other bytes carry the tag/sequence number of the
packet. The tag number increases by one per packet. Table 3-4 shows the packet format
used in the Raw Packet Data module.

Note: The data uses a fixed pattern to enable data checking. The data could be any random data
otherwise.

Table 3-5 shows the ports on the Raw Packet Data module.

Table 3-4: Packet Format

[63:56] [48:55] [47:40] [39:32] [31:24] [23:16] [15:8] [7:0]

TAG TAG TAG PACKET LEN

TAG TAG TAG TAG

- - - -

- - - -

TAG TAG TAG TAG

Table 3-5: Ports on Raw Packet Data Module

Port Name Type Description

clk Input 250 MHz clock

reset Input Synchronous reset

Read Interface

axi_str_tx_tdata Input Data available from VFIFO transmit

axi_str_tx_tkeep Input Number of bytes valid per data beat on axi_str_tx_tdata

axi_str_tx_tvalid Input Indicates data on axi_str_tx_tdata is valid

axi_str_tx_tlast Input Indicates the end of packet on axi_str_tx_tdata

axi_str_tx_tuser Input VFIFO passes the length of the packet being transmitted

http://www.xilinx.com

50 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Chapter 3: Functional Description

Clocking

This section describes the clocking requirements for this Kintex-7 FPGA Base TRD.

Two differential clocks are needed in this TRD:

• 200 MHz clock and 800 MHz clock for the Memory Controller

• 100 MHz clock for PCI Express integrated Endpoint block

The KC705 board used for this reference design has a 100 MHz differential clock coming
from the PCIe edge connector is passed on to the PCIe wrapper. The 200 MHz differential
clock for the DDR3 Memory Controller comes from an oscillator on the KC705 board, and
an 800 MHz clock is generated inside the Memory Controller by adjusting the MMCM
multipliers and dividers.

axi_str_tx_tready Output Indicates the Raw Packet Data module is ready to accept data
from VFIFO transmit

Write Interface

axi_str_tx_tdata Output Data available for VFIFO receive

axi_str_tx_tkeep Output Number of bytes valid per data beat on axi_str_rx_tdata

axi_str_tx_tvalid Output Indicates data on axi_str_rx_tdata is valid

axi_str_tx_tlast Output Indicates the end of packet on axi_str_tx_tdata

axi_str_tx_tuser Output Raw Packet Data module passes the length of the packet to
VFIFO receive

axi_str_tx_tready Input Indicates VFIFO receive is ready to accept data from Raw Packet
Data module

Register Interface

enable_loopback Input Enables looping back of transmit data

enable_generator Input Enables data generator

pkt_len Input Length of packets produced by the generator

enable_checker Input Enable data checker

data_mismatch Output Indicates the transmit data is incorrect

Table 3-5: Ports on Raw Packet Data Module (Cont’d)

Port Name Type Description

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 51
UG882 (v1.2) August 3, 2012

Hardware Architecture

Figure 3-7 shows the clocking connections. The wrapper for PCI Express generates a 250
MHz single-ended clock that goes to the DMA, Packetized Virtual FIFO Controller, and
Raw Packet Data modules. The DDR3 Memory Controller generates a single-ended 200
MHz clock for the Packetized Virtual FIFO Controller and AXI Interconnect, and an 800
MHz single/differential clock for various parts of the Memory Controller and the external
DDR3 device.

Resets

This section describes the reset requirements for Kintex-7 FPGA Base TRD.

X-Ref Target - Figure 3-7

Figure 3-7: Clocking Diagram

UG882_c3_07_010512

IBUFDSclk_200_n

clk_250

DMA

Packetized VFIFO
controller

DDR3 Memory Controller

clk_200

clk_200_p DDR3MMCM

clk_800

clk_250

IBUFDSclk_100_n

PCI Express Endpoint Wrapper

clk_100_p MMCM

Raw Packet
Data Module

clk_250

AXI
Interconnect

clk_200 200 MHz
Clock

Domain

200 MHz
Clock

Domain

250 MHz
Clock

Domain

250 MHz
Clock

Domain

250 MHz
Clock

Domain

Table 3-6: Resets by Function

Modules PERSTn Asserted
PCIe Link

Down
Software Requests

DMA Abort

PCIe Wrapper X

DMA IP X X

DDR3 Memory Controller IP X

AXI Interconnect X

http://www.xilinx.com

52 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Chapter 3: Functional Description

Table 3-6 shows how the different blocks get reset depending on the events that can
happen. The primary reset for the Kintex-7 FPGA Base TRD is driven from the PERSTn pin
of the PCIe edge connector. When this asynchronous pin is active (Low), the
Kintex-7 FPGA Integrated Block for PCI Express, GT transceivers for PCIe and DDR3
Memory Controller IP are held in reset. When PERSTn is released, the initialization
sequences start on these blocks. The initialization sequence for each of these blocks takes a
long time, which is why they get the PERSTn pin directly. Each of these blocks has an
output that reflects the status of its initialization sequence. PCIe asserts user_lnk_up, and
the Memory Controller asserts init_calib_complete when the respective initialization is
complete. These status signals are combined to generate the user logic resets. Figure 3-8
shows the connections for the resets used in the design.

Packetized VFIFO controller X X X

Raw Packet Data X X X

Table 3-6: Resets by Function (Cont’d)

Modules PERSTn Asserted
PCIe Link

Down
Software Requests

DMA Abort

X-Ref Target - Figure 3-8

Figure 3-8: Reset Diagram

UG882_c3_08_010912

DDR3 Memory
Controller

PCI Express
Endpoint Wrapper

DMA

AXI
Interconnect

Port 0

Port 1

Port 2

Port 3

Packetized VFIFO
controller

init_calib_done

user_lnk_up

Software Reset,
register write to DMA

reset registers

wr_reset_n

wr_reset_n

wr_reset_n

wr_reset_n

rd_reset_n

rd_reset_n

rd_reset_n

rd_reset_n

perstn

perstn

Software Reset, Register Write to Reset
AXI Interconnect and MIGAXI Interface

axi_ic_mig_shim_rst_n

MIG AXI
Interface

axi_rst_n axi_rst_n

axi_str_c2s0_areset_n

axi_str_s2c0_areset_n

axi_str_s2c1_areset_n

axi_str_c2s1_areset_n

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 53
UG882 (v1.2) August 3, 2012

Software Architecture

In addition, a software reset is implemented through the Packet DMA ports
axi_str_s2c_areset_n and axi_str_c2s_areset_n, for each DMA channel. It is used when the
software wants to reset the entire design without bringing the PCIe link down. This is done
when unloading the driver. The DMA reset signals, resets the Packetized VFIFO controller
and the Raw Packet Data modules. Another reset axi_ic_mig_shim_rst_n is issued by the
software when unloading the driver. The software makes sure that DDR3 FIFO and the
preview FIFOs are empty before resetting the AXI Interconnect IP and the MIG AXI
interface. This is to ensure that all packets were received by the software and there are no
partial packets left in the FIFOs.

Software Architecture
Figure 3-9 shows the software components of the Kintex-7 FPGA Base TRD. The software
comprises several Linux kernel-space drivers and a user-space application.

Kernel-space Drivers are responsible for:

• Configuration of the DMA engine to enable data transfer between the hardware
design and main system memory

X-Ref Target - Figure 3-9

Figure 3-9: Software Architecture Overview

DMA Engine Interface and Interrupt
Management Interfaces

UG882_c3_09_011812

Software

Legend

Hardware

User Space

Kernel Space

Software
Custom
Blocks

Hardware
Blocks

Driver Entry
Points

Third Party DMA Engine Statistics Registers
of PCIe Link &
DMA Engine

Interrupt OperationsDMA Operations

Application Layer Interface

Raw Data
Packet Handler

Init Init

Packets

DMA TX Port DMA RX Port

Raw Data
Packet Handler

Packets

Application Layer

DMA Layer

Control GUI
xpmon

Driver Entry:
open, close, ioctl, read

Performance
Monitior

http://www.xilinx.com

54 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Chapter 3: Functional Description

• Generation and transfer of raw data streams from host memory to hardware
(Transmit). Transfer of the looped or generated streaming data back to the host
memory (Receive).

User-space Application (xpmon) is a graphical user interface (GUI) used to:

• Manage the driver and device - for example setting configuration controls for packet
generation and display options

• Display of performance statistics reported by PCIe performance monitor and DMA
performance monitor

The software developed:

• Can generate adequate data to enable the hardware design to operate at throughput
rates of up to 10 Gb/s end to end.

• Showcases the ability of the multi-channel DMA to transfer large amounts of data.

• Provides a user interface that is easy to use and intuitive.

• Is modular and allows for reuse in similar designs.

Kernel Components

Driver Entry Points

The driver has several entry points, some of which are described here. The system invokes
the driver entry function when a hardware match is detected after driver insertion (when
the PCIe device probed by the driver is found). After reading the device's configuration
space, various initialization actions are done. These are initialization of the DMA engine(s),
setting up of receive and transmit buffer descriptor rings, and, finally, initialization of
interrupts. The other driver entry points are when the GUI starts up and shuts down; when
a new performance test is started or stopped; and to convey periodic status information
and performance statistics results to the GUI.

On a Linux OS, the system invokes the probe() function when a hardware match is
detected. A device node is created for xdma (the node name is fixed and the major/minor
numbers are allocated by the system). The base DMA driver appears as a device table entry
in Linux.

DMA Operations

For each DMA channel, the driver sets up a buffer descriptor ring. At initialization, the
receive ring (associated with a C2S channel) is fully populated with buffers meant to store
incoming packets, and the full receive ring is submitted for DMA. On the other hand, the
transmit ring (associated with S2C channel) is empty. As packets arrive for transmission,
they are added to the buffer descriptor ring, and submitted for DMA.

Raw Data Packet Handler

Data payload for raw data flow is being generated and consumed in two instances of the
Raw Data Packet Handler. These are referred to as xrawdata0 and xrawdata1 drivers.
When a test is started, data buffers are generated of a fixed size based on user selection and
then queued for transmit DMA. The hardware design loops this data back through the
Raw Packet Data module, and the data buffers arrive in the system as receive DMA. The
handler does a data integrity check on the received data after which it discards the data
and returns the buffer to a free pool for future use.

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 55
UG882 (v1.2) August 3, 2012

Software Architecture

Interrupt Operations

If interrupts are enabled (by setting the compile-time macro TH_BH_ISR), the interrupt
service routine (ISR) handles interrupts from the DMA engine and other errors from
hardware, if any. The driver sets up the DMA engine to interrupt after every N descriptors
that it processes. This value of N can be set by a compile-time macro. The ISR invokes the
functionality in the block handler routines pertaining to handling received data and
housekeeping of completed transmit and receive buffers.

Performance Monitor

The Performance Monitor is a handler that reads all the performance-related registers
(PCIe link level, DMA Engine level). Each of these is read periodically at an interval of one
second.

User Space Components

The Control & Monitor GUI (xpmon) is a graphical user interface tool used to monitor
device status, run performance tests and display statistics. It conveys the user-configured
test parameters to the DMA driver, which in turn passes this information to the Raw Data
Packet driver through user registered functions. The Raw Data Packet drivers start an
appropriate test according to the test value set by the user. Performance statistics gathered
during the test are periodically conveyed to the GUI through the base DMA driver, where
they are displayed in several graphs. For screen captures of the graphs, refer to Chapter 2,
Getting Started.

The GUI uses the OS-specific methods to communicate with the driver, which results in the
appropriate driver entry points being invoked.

Control

The GUI allows the user to specify these items before starting a test:

• Packet size

• Enable Loopback or Enable Generator or Enable Checker

When the user starts a test, the GUI informs the DMA driver of the parameters of the test
(unidirectional or bidirectional, the fixed buffer size). The driver sets up the test
parameters and informs the Raw Data Packet Handler, which then starts setting up data
buffers for transmission, reception or both. Similarly, if the user were to abort a test, the
GUI informs the driver, which stops the packet generation mechanism. The test is aborted
by stopping the transmit side flow, and then allowing the receive side flow to drain.

Monitor

The driver always maintains information on the status of the hardware. The GUI
periodically invokes an ioctl() to read this status information.

• PCIe link status, device status

• DMA Engine status

• BDs and buffer information from drivers

• Interrupt status

The driver maintains a set of arrays to hold per-second sampling points of different kinds
of statistics, which are periodically collected by the performance monitor handler. The

http://www.xilinx.com

56 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Chapter 3: Functional Description

arrays are handled in a circular fashion. The GUI periodically invokes an ioctl() to read
these statistics, and then displays them.

• PCIe link statistics provided by hardware

• DMA engine statistics provided by DMA hardware

• Graph display of all of the above

Figure 3-10 shows a screen capture of the GUI with the System Status tab selected.

The GUI Fields (indicated by the numbers in the Figure 3-10) are explained here.

1. Stop Test: Test start/stop control for raw data Path0.

2. Start Test: Test start/stop control for raw data Path1.

3. Packet Size: Fixed packet size selection in bytes for the raw data path.

4. PCIe Statistics tab: Plots the PCIe transactions on the AXI4-Stream interface.

5. Payload Statistics tab: Shows the payload statistics graphs based on DMA
engine performance monitor.

X-Ref Target - Figure 3-10

Figure 3-10: Software Application Screen Capture

1010

UG882_c3_10_010912

3

1

13

15

16

2

4

5

17

6
7
8
9
10

12
11

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 57
UG882 (v1.2) August 3, 2012

Software Architecture

6. Throughput (Gb/s): DMA payload throughput in gigabits per second for each
engine.

7. DMA Active Time (ns): The time in nanoseconds that the DMA engine has been
active in the last second.

8. DMA Wait Time (ns): The time in nanosecond that the DMA was waiting for the
software to provide more descriptors.

9. BD Errors: Indicates a count of descriptors that caused a DMA error. Indicated by
the error status field in the descriptor update.

10. BD Short Errors: Indicates a short error in descriptors in the transmit direction
when the entire buffer specified by length in the descriptor could not be fetched. This
field is not applicable for the receive direction.

11. # SW BDs: Indicates the count of total descriptors set up in the descriptor ring.

12. # SW Buffers: Indicates the count of total data buffers associated with the ring.

13. Interrupts Enabled: Indicates the interrupt enable status for that DMA engine.
The driver enables interrupts on a DMA engine by writing to the DMA engine's
register space. To enable interrupts, the compile-time macro TH_BH_ISR needs to be
set.

14. PCIe Transmit (writes) (Gb/s): Reports the transmit (Endpoint card to host)
utilization as obtained from the PCIe performance monitor in hardware.

15. PCIe Receive (reads) (Gb/s): Reports the receive (host to Endpoint card)
utilization as obtained from the PCIe performance monitor in hardware.

16. PCIe Endpoint Status: Reports the status of various PCIe fields as reported in
the Endpoint's configuration space. Host System's Initial Flow Control Credits. Initial
Flow control credits advertised by the host system after link training with the
Endpoint. A value of zero implies infinite flow control credits.

17. The text pane at the bottom shows informational messages, warnings, or errors.

GUI programming environment

After looking at various options, it was decided to choose GTK+ as the GUI programming
environment. It has several advantages

• GTK+ libraries are native to Linux. Nothing has to be installed for basic features. This
makes it easy to distribute source code and binaries for the GUI.

• It supports C/C++ programming.

• The code can be reused on Windows (where GTK+ would need to be installed).

• It is widely used and popular in the Linux community and is free.

DMA Descriptor Management

This section describes the DMA operation in terms of the descriptor management. It also
describes data alignment needs of the DMA engine.

Traffic patterns could be bursty or sustained. To deal with different traffic scenarios, the
software does not decide in advance the number of packets to be transferred, and
accordingly sets up a descriptor chain for it. Packets can fit in a single descriptor, or might
be required to span across multiple descriptors. Also, on the receive side, the actual packet
might be smaller than the original buffer provided to accommodate it.

It is therefore required that:

http://www.xilinx.com

58 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Chapter 3: Functional Description

• The software and hardware are each able to independently work on a set of buffer
descriptors in a supplier-consumer model

• The software is informed of packets being received and transmitted as it happens

• On the receive side, the software needs a way of knowing the size of the packet

The rest of this section describes how the driver uses the features provided by DMA to
achieve the above requirements. Refer to Scatter Gather Packet DMA, page 39 and the
Northwest Logic Packet DMA User Guide to get an overview of the DMA descriptors and
DMA register space [Ref 17].

Dynamic DMA Updates

This section describes how the descriptor ring is managed in the Transmit or
System-to-Card (S2C) and Receive or Card-to-System (C2S) directions.

Initialization Phase

Driver prepares descriptor rings for each DMA channel, each containing a number of
descriptors that can be set via a compile-time macro. In the current design, the driver thus
prepares four rings.

Transmit (S2C) Descriptor Management

In Figure 3-11, the dark blocks indicate descriptors that are under hardware control, and
the light blocks indicate descriptors that are under software control.

Table 3-7 presents some of the terminology used in this section.

S2C Initialization Phase

• Driver initializes HW_Next and SW_Next registers to start of ring.

• Driver resets HW_Completed register.

Table 3-7: Terminology Summary

Term Description

HW_Completed Register with the address of the last descriptor that DMA engine has
completed processing

HW_Next Register with the address of the next descriptor that DMA engine
processes

SW_Next Register with the address of the next descriptor that software submits for
DMA

X-Ref Target - Figure 3-11

Figure 3-11: Transmit Descriptor Ring Management

1 2 3

SW_Next SW_NextHW_Next

UG882_c3_11_121711

HW_Next

SW_Next HW_Next

HW_Completed

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 59
UG882 (v1.2) August 3, 2012

Software Architecture

• Driver initializes and enables DMA engine.

Packet Transmission

• Packet is generated by the packet handler.

• Packet is attached to one or more descriptors in ring.

• Driver marks SOP, EOP and IRQ_on_completion in descriptors.

• Driver updates SW_Next register.

Post-Processing

• Driver checks for completion status in descriptor.

• Driver frees packet buffer.

This process continues as the driver keeps adding packets for transmission, and the DMA
engine keeps consuming them. Because the descriptors are already arranged in a ring,
post-processing of descriptors is minimal and dynamic allocation of descriptors is not
required.

Receive (C2S) Descriptor Management

In Figure 3-12, the dark blocks indicate descriptors that are under hardware control, and
the light blocks indicate descriptors that are under software control.

C2S Initialization Phase

• Driver initializes each receive descriptor with an appropriate Data buffer.

• Driver initializes HW_Next register to start of ring and SW_Next register to end of
ring.

• Driver resets HW_Completed register.

• Driver initializes and enables DMA engine.

Post-Processing after Packet Reception

• Driver checks for completion status in descriptor.

• Driver checks for SOP, EOP and User Status information.

• Driver discards the completed packet buffer(s).

• Driver allocates new packet buffer for descriptor.

• Driver updates SW_Next register.

X-Ref Target - Figure 3-12

Figure 3-12: Receive Descriptor Ring Management

1 2 3

HW_Next SW_Next

SW_Next

SW_Next

UG882_c3_12_121711

HW_Next HW_Completed
HW_Completed

HW_Next

http://www.xilinx.com

60 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Chapter 3: Functional Description

This process continues as the DMA engine keeps adding received packets in the ring, and
the driver keeps consuming them. Because the descriptors are already arranged in a ring,
post-processing of descriptors is minimal and dynamic allocation of descriptors is not
required.

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 61
UG882 (v1.2) August 3, 2012

Chapter 4

Performance Estimation

This chapter presents a theoretical estimation of performance on the PCI Express interface
and the Packetized Virtual FIFO. It also presents a method to measure performance.

PCI Express Performance
PCI Express is a serialized, high bandwidth and scalable point-to-point protocol which
provides highly reliable data transfer operations. The maximum transfer rate for a device
that is version 2.0 compliant per lane is 2.5 Gb/s at Gen1 and 5 Gb/s at Gen2. This rate is
the raw bit rate per lane per direction and not the actual data transfer rate. The effective
data transfer rate is lower due to protocol overheads and other system design tradeoffs.
Refer to the white paper WP350, Understanding Performance of PCI Express Systems, for more
information [Ref 6].

The PCI Express link performance together with scatter-gather DMA is estimated under
these assumptions:

• Each buffer descriptor points to a 4 KB data buffer space.

• Maximum Payload Size (MPS) = 128B

• Maximum Read Request Size (MRRS) = 128B

• Read Completion Boundary (RCB) = 64B

• Transaction layer packets (TLPs) of three data words (3DWs) considered without
extended cyclic redundancy check (ECRC), overhead = 20B

• One ACK packet (acknowledgment packet) assumed per TLP, DLLP (ACK is a Data
link layer packet) overhead = 8B

• Update FC DLLPs are not accounted for, but they do affect the final throughput
slightly.

The performance is projected by estimating overheads, then calculating the effective
throughput by deducting these overheads.

These conventions are used in the calculations in Table 4-1 and Table 4-2:

Term Description

MRD Memory Read transaction

MWR Memory Write transaction

CPLD Completion with Data

C2S Card to System

S2C System to Card

http://www.xilinx.com

62 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Chapter 4: Performance Estimation

Calculations are done considering unidirectional data traffic that is either transmit (data
transfer from System to Card) or receive (data transfer from Card to System).

Traffic on the upstream (Card to System) PCIe link is bolded and traffic on the downstream
(System to Card) PCIe link is italicized.

The C2S DMA engine (which deals with data reception, i.e., writing data to system
memory) first does a buffer descriptor fetch. Using the buffer address in the descriptor, it
issues Memory Writes to the system. After the actual payload in transferred to the system,
it sends a Memory Write to update the buffer descriptor. Table 4-1 shows the overhead
incurred during data transfer in the C2S direction.

For every 128 bytes of data sent from the card to the system, the overhead on the upstream
link (in bold) is 21.875 bytes.

% Overhead = 21.875/ (128 + 21.875) = 14.60%

The throughput per PCIe lane is 2.5 Gb/s, but because of 8B/10B encoding, the throughput
comes down to 2 Gb/s.

Maximum theoretical throughput per lane for
Receive = (100 – 14.60)/100 * 2 Gb/s = 1.70 Gb/s

Maximum theoretical throughput for a
x4 Gen2 or x8 Gen1 link for Receive = 13.6 Gb/s

The S2C DMA engine (which deals with data transmission, i.e., reading data from system
memory) first does a buffer descriptor fetch. Using the buffer address in the descriptor, it
issues Memory Read requests and receives data from system memory through
completions. After the actual payload in transferred from the system, it sends a Memory
Write to update the buffer descriptor. Table 4-2 shows the overhead incurred during data
transfer in the S2C direction.

Table 4-1: PCI Express Performance Estimation with DMA in the C2S Direction

Transaction Overhead
ACK

Overhead
Comment

MRD for C2S Desc = 20/4096 = 0.625/
128

8/4096 =
0.25/128

One descriptor fetch from C2S engine
for 4 KB data (TRN-TX); 20B of TLP
overhead and 8 bytes DLLP
overhead

CPLD for C2S Desc = 20+32/4096 =
1.625/128

8/4096=0.25/
128

Descriptor reception by C2S engine
(TRN-RX). CPLD Header is 20 bytes,
and the C2S Desc data is 32 bytes.

MWR for C2S buffer = 20/128 8/128 MPS = 128B; Buffer write from C2S
engine (TRN-TX)

MWR for C2S Desc update = 20+12/
4096 = 1/128

8/4096 =
0.25/128

Descriptor update from C2S engine
(TRN-TX). MWR header is 20 bytes,
and the C2S Desc update data is 12
bytes.

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 63
UG882 (v1.2) August 3, 2012

PCI Express Performance

For every 128 bytes of data sent from system to card, the overhead on the downstream link
(italicized) is 50.125 bytes.

% Overhead = 50.125/128 + 50.125 = 28.14%

The throughput per PCIe lane is 2.5 Gb/s, but because of 8B/10B encoding, the
throughput comes down to 2 Gb/s.

Maximum theoretical throughput per lane for Transmit = (100 – 28.14)/100 * 2 =
1.43 Gb/s

Maximum theoretical throughput for a x4 Gen2 or x8 Gen1 link for Transmit =
11.44 Gb/s.

Because the TRD has two raw data paths, there are two C2S DMA engines and two S2C
DMA engines. Each C2S and S2C engine should be able to theoretically operate at the
13.6 Gb/s and 11.44 Gb/s, respectively. If both data are enabled, the DMA splits the
available bandwidth between the two C2S engines and two S2C engines.

The throughput numbers are theoretical and could go down further due other factors,
such as:

• With an increase in lane width, PCIe credits are consumed at a faster rate, which could
lead to throttling on the PCIe link reducing throughput.

• The transaction interface of PCIe is 64 bits wide. The data sent is not always 64-bit
aligned, and this could cause some reduction in throughput.

• Changes in MPS, MRRS, RCB, and buffer descriptor size also have significant impact
on the throughput. The MPS and MRRS values are negotiated between the host PC
and all the endpoints plugged into the host PC. The RCB value is specific to the host
PC.

• If bidirectional traffic is enabled, then overhead incurred further reduces throughput.

• Software overhead/latencies also contribute to reducing throughput.

Table 4-2: PCI Express Performance Estimation with DMA in the S2C Direction

Transaction Overhead
ACK

Overhead
Comment

MRD for S2C Desc=20/
4096=0.625/128

8/4096 = 0.25/
128

Descriptor fetch from S2C engine
(TRN-TX)

CPLD for S2C Desc=20+32/
4096=1.625/128

8/4096 = 0.25/
128

Descriptor reception by S2C engine
(TRN-RX). CPLD Header is 20 bytes and
the S2C Desc data is 32 bytes.

MRD for S2C Buffer = 20/128 8/128 Buffer fetch from S2C engine (TRN-TX).
MRRS=128B

CPLD for S2C buffer = 20/64 = 40/
128

8/64=16/128 Buffer reception by S2C engine
(TRN-RX). Because RCB=64B, 2
completions are received for every 128
byte read request

MWR for S2C Desc=20+4/
4096=0.75/128

8/4096=0.25/
128

Descriptor update from S2C engine
(TRN-TX). MWR Header is 20 bytes and
the S2C Desc update data is 12 bytes.

http://www.xilinx.com

64 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Chapter 4: Performance Estimation

Packetized Virtual FIFO Performance
For the Packetized Virtual FIFO, the theoretical maximum bandwidth to the DDR3
@ 800 MHz is 102.4 Gb/s.

Maximum IO Rate (double data rate) = 800 MHz * 2 = 1,600 Mb/s

Maximum Bandwidth = (Maximum IO rate) x (Number of IOs) = 1600 Mb/s x 64 =
102.4 Gb/s.

The data bandwidth to and from the DDR3 is a percentage of the total bandwidth on the
64-bit I/O lines. For the Virtual FIFO, data bandwidth efficiency is expected to be 80–90%.

An estimate of Memory Controller performance for burst size of 128 is calculated as
follows:

With larger burst lengths, higher efficiency can be achieved.

With 64-bit port using a burst length of 128, a total of 8192 bits are transferred.

The number of bits transferred per cycle is:

64 (bit width) * 2 (double data rate) = 128 bits per cycle

The total cycles used for 8192 bits is:

8192/128 = 64 cycles per transfer

Assuming 10 cycles read to write overhead:

64/74 = 86% efficiency

Assuming 5% efficiency overhead for refresh, the total efficiency is about 81%.

Table 4-4 lists the estimated performance of the Packetized Virtual FIFO.

If we consider one S2C and one C2S DMA engine is enabled, the throughput required on
the DDR3 interface is

[13.6 Gb/s (S2C) + 11.44 (C2S)] * 2 (Writes and Read, in and out of the DDR3) = 50.08 Gb/s

Because the maximum theoretical throughput numbers on the PCIe link with the DMA
overhead is less than what the Virtual FIFO can handle, the limiting component in this Base
TRD's system performance is the PCIe and DMA.

Measuring Performance
This section shows how performance is measured in the TRD.

It should be noted that PCI Express performance depends on factors like maximum
payload size, maximum read request size, and read completion boundary, which are
dependent on the systems used. With higher MPS values, performance improves as packet
size increases.

Table 4-3: Projected Performance of Packetized Virtual FIFO with DDR3 Running
@ 800 MHz

Virtual FIFO Throughput (Gb/s) Comments

Total throughput 102.4*0.8= 81.92 80% efficiency

Total throughput 102.4*0.9= 92.16 90% efficiency

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 65
UG882 (v1.2) August 3, 2012

Measuring Performance

Hardware provides the registers listed in Table 4-4 for software to aid performance
measurement.
.

These registers are updated once every second by hardware. Software can read them
periodically at one second intervals to directly get the throughput.

The PCIe monitor registers can be read to understand PCIe transaction layer utilization.
The DMA registers provide throughput measurement for actual payload transferred.

These registers give a good estimate of the TRD performance.

Table 4-4: Performance Registers in Hardware

Register Description

DMA Completed Byte Count DMA implements a completed byte count register per engine
which counts the payload bytes delivered to the user on the
streaming interface.

PCIe AXI TX Utilization This register counts traffic on PCIe AXI TX interface
including TLP headers for all transactions.

PCIe AXI RX Utilization This register counts traffic on PCIe AXI RX interface
including TLP headers for all transactions.

PCIe AXI TX Payload This register counts payload for memory write transactions
upstream which includes buffer write and descriptor
updates.

PCIe AXI RX payload This register counts payload for completion transactions
downstream which includes descriptor or data buffer fetch
completions.

http://www.xilinx.com

66 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Chapter 4: Performance Estimation

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 67
UG882 (v1.2) August 3, 2012

Chapter 5

Designing with the TRD Platform

The TRD platform acts as a framework for system designers to derive extensions or modify
designs. This chapter outlines various ways for a user to evaluate, modify, and re-run the
TRD. The suggested modifications are grouped under these categories:

• Software-only modifications are made by modifying software components only
(drivers, demo parameters, and so on.). The design does not need to be
re-implemented.

• Design modifications are changes made to design parameters. These changes modify
hardware components only, i.e., parameters of individual IP components, custom
logic, or the top level. The design must be re-implemented through the ISE® design
tools.

• Architectural changes modify both hardware and software components. The design
must be re-implemented through the ISE design tools. An example would be to add
or replace IP blocks. The user needs to do some design work to ensure the new blocks
can communicate with the existing interfaces in the framework. The user is also
responsible to make sure that the new IP does not break the functionality of the
existing framework. Relevant software changes might also be required to support the
new IP.

All of these use models are fully supported by the framework, provided that the
modifications do not require the supported IP components to operate outside the scope of
their specified functionality.

This chapter provides examples to illustrate some of these use models. While some are
simple modifications to the design, others involve replacement or addition of new IP. The
new IP could come from Xilinx (and its partners) or from the customer's internal IP
activities.

Software-Only Modifications
This section describes modifications to the platform done directly in the software driver.
The same hardware design (BIT/MCS files) works. After any software modification, the
code needs to be recompiled. The Linux driver compilation procedure is detailed in
Appendix D, Compiling Linux Drivers.

Macro-Based Modifications
This section describes the modifications, which can be realized by compiling the software
driver with various macro options, either in the Makefile or in the driver source code.

http://www.xilinx.com

68 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Chapter 5: Designing with the TRD Platform

Descriptor Ring Size

The number of descriptors to be set up in the descriptor ring can be defined as a compile
time option.

To change the size of the buffer descriptor ring used for DMA operations, modify
DMA_BD_CNT in linux_driver/xdma/xdma_base.c.

Smaller rings can affect throughput adversely, which can be observed by running the
performance tests.

A larger descriptor ring size uses additional memory, but improves performance, because
more descriptors can be queued to hardware. Also see section Size of Block Data, page 68.

Note: The DMA_BD_CNT in the driver is set to 2999. Increasing this number might not improve
performance.

Log Verbosity Level

To control the log verbosity level in Linux:

• Add DEBUG_VERBOSE in the Makefiles in the directories linux_driver/xdma,
linux_driver/xrawdata0, and linux_driver/xrawdata1 to cause the
drivers to generate verbose logs.

• Add DEBUG_NORMAL in the Makefiles in the directories linux_driver/xdma,
linux_driver/xrawdata0, and linux_driver/ xrawdata1 to cause the
drivers to generate informational logs.

• Remove both these macros from the Makefiles in the directories linux_driver/
xdma, linux_driver/xrawdata0, and linux_driver/ xrawdata1 to cause
the drivers to only generate error logs.

Changes in the log verbosity are observed when examining the system logs. Increasing the
logging level also causes a drop in throughput.

Driver Mode of Operation

The base DMA driver can be configured to run in either interrupt mode with MSI
interrupts or in polled mode. Only one mode can be selected. To control the driver:

• Add TH_BH_ISR in the Makefile linux_driver/xdma to run the base DMA driver
in interrupt mode.

• Remove the TH_BH_ISR macro to run the base DMA driver in polled mode.

Note: The interrupt mode has had only limited testing in hardware.

Size of Block Data

To modify the default amount of data being transmitted and received in the raw data
drivers:

• Modify NUM_BUFS in xrawdata0/sguser.c or xrawdata1/sguser.c to
change the number of buffers in the free pool available to the drivers. This
modification changes the throughput observed with these drivers. If NUM_BUFS is
modified, DMA_BD_CNT should also be modified to a value equal to NUM_BUFS-1.

Note: The available system memory must not be exceeded when these defaults are changed.

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 69
UG882 (v1.2) August 3, 2012

Top-Level Design Modifications

Software Driver Code Modifications
This section describes the modifications that can be made to software driver code to see a
change in design behavior or performance.

The Block Data handler for raw data paths (xrawdata0/sguser.c,
xrawdata1/sguser.c) can be modified as follows.

Data is written into DDR3 memory in a flat, unstructured manner, with known patterns. It
is possible to create a packet format with some form of CRC, which can then be verified on
the receive path. Packets are generated and verified within the driver and are not conveyed
to or from any real user application as data. One suggested modification is to transfer this
data between the driver and a user application. This requires significant changes in the
driver entry points and in the driver's PutPkt() and GetPkt() routines. The data is
transmitted (written) into DDR3 memory, and is looped back and received (read) from
DDR3 memory.

Top-Level Design Modifications
This section describes changes to parameters in the top-level design file that can change the
design behavior. Modifications to the software driver might be required based on the
parameters being changed.

Hardware-Only Modifications
This section outlines the changes that require only hardware re-implementation.

Configuring the PCIe Link as x4 Lane at 2.5 Gb/s

The Kintex-7 FPGA integrated Endpoint block for PCI Express can be configured as x4 at a
2.5 Gb/s (Gen1) link rate instead of x4 at a 5 Gb/s (Gen2) link rate, taking a hit in
performance. Selecting the option to configure the reference design with a x4 PCIe link at
2.5 Gb/s in the implement script automatically sets the parameters required for this
change in the top-level design file. This option is enabled by this command:

$ source implement.sh x4 gen1 (for Linux)

$ implement.bat -lanemode x4gen1 (for Windows)

The implement script is available in the k7_pcie_dma_ddr3_base/design/
implement directory of the TRD. After configuring the FPGA with the new bitstream, the
user can rerun the TRD (refer to Reprogramming the Base TRD, page 30 in Chapter 2,
Getting Startedto configure the FPGA). The results of the performance evaluation should
be lower than the original version of the TRD.

Hardware and Software Modifications
This section outlines changes to be done to the top-level design file
(k7_pcie_dma_ddr3_base.v) that also require software driver modifications.

http://www.xilinx.com

70 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Chapter 5: Designing with the TRD Platform

PCIe Vendor and Device ID

PCIe vendor ID and device ID can be updated through these local parameters (localparam)
in the top-level file:

• VENDOR_ID in the file k7_pcie_dma_ddr3_base/design/source/
k7_pcie_dma_ddr3_base.v changes the vendor ID.

• DEVICE_ID in the file k7_pcie_dma_ddr3_base /design/source/
k7_pcie_dma_ddr3_base.v changes the device ID.

The software then requires a corresponding change.

• Change the PCI_VENDOR_ID_DMA macro in k7_pcie_dma_ddr3_base/
linux_driver/xdma/xdma_base.c.

• Change the PCI_DEVICE_ID_DMA macro in k7_pcie_dma_ddr3_base/
linux_driver/xdma/xdma_base.c.

Refer to Appendix D, Compiling Linux Drivers for how to recompile drivers and install
them. Refer to Appendix C, Directory Structure to navigate to the required files.

Architectural Modifications
This section describes architecture level changes to the functionality of the platform. These
changes include adding or deleting IP with similar interfaces used in the framework.

Aurora IP Integration

The LogiCORE IP Aurora 8B/10B core implements the Aurora 8B/10B protocol using the
high-speed Kintex-7 FPGA GTX transceivers. The core is a scalable, lightweight link layer
protocol for high-speed serial communication. It is used to transfer data between two
devices using transceivers. It provides an AXI4-Stream compliant user interface.

A 4-lane Aurora design with 2-byte user interface data width presents a 64-bit
AXI4-Stream user interface, which matches the Raw Packet Data module's interface within
the framework. Hence, a customer can accelerate the task of creating a PCIe-to-Aurora
bridge design through these high-level steps:

1. Generate a four-lane (3.125 Gb/s line rate per lane) and two-byte Aurora 8B/10B
LogiCORE IP from the CORE Generator tool. Remove the raw data block instance.

2. Remove the Raw Packet Data block and insert the Aurora LogiCORE IP into the
framework (see Figure 5-1).

3. Add an MMCM block to generate a 156.25 MHz clock, or use an external clock source,
to drive a 156.25 MHz clock into the Aurora LogiCORE IP.

4. Simulate the design with the out-of-box simulation framework with appropriate
modifications to include the Aurora files.

5. Implement the design and run the design with Aurora in loopback mode with minimal
changes to the implementation flow.

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 71
UG882 (v1.2) August 3, 2012

Architectural Modifications

Aurora IP does not support throttling in the receive direction, because the core has no
internal buffers. The Multiport Virtual FIFO in the data path allows the user to drain
packets at the line rate. The Native Flow Control feature of Aurora can also be used to
manage flow control. As per the Aurora protocol, the round trip delay through the Aurora
interfaces between the NFC request and the first pause arriving at the originating channel
partner must not exceed 256 symbol times.

For 4 lanes, time taken to transmit 4 symbols with each lane running at 3.125 Gb/s
40 bits/4 lanes x 1/3.125 Gb/s = 3.2 ns (1 symbol = 10 bits because of 8B/10B encoding
scheme).

For 256 symbols, time taken to transmit is 256/4 x 3.2 = 205 ns.

For a 156.25 MHz clock (8 ns period), this is 26 clock cycles (the worst case delay),
amounting to a FIFO depth of 26, which is required to hold data received on the Aurora RX
interface after an NFC request to pause data is initiated. The user must appropriately
configure the preview FIFO thresholds for full and empty in Multiport Virtual Packet FIFO
considering this value to prevent overflows.

The Raw Packet Data driver can be reused for Aurora with some modifications. The data
generated by the block handler for Raw Packet Data could now drive traffic over Aurora.
The Aurora serial interface needs to be looped back externally or connected to another
Aurora link partner.

The maximum theoretical throughput that can be achieved on the Aurora path is 10 Gb/s
(64 bit * 156.25 MHz). Refer to UG766, LogiCORE IP Aurora 8B/10B v7.1 User Guide (AXI) for
throughput efficiency [Ref 3].

X-Ref Target - Figure 5-1

Figure 5-1: Integrating Aurora

UG882_c5_01_011212

Multiport Virtual FIFO

Multi-channel
DMA for PCIe DDR3

C
ha

nn
el

-0
C

2S
S

2C
C

ha
nn

el
-1

S
2C

C
2S

64 x
1600 Mb/s

P
C

Ie
 x

4G
en

2/
x8

G
en

1
Li

nk
VFIFO

Controller

Interface Blocks in FPGA Third Party IPXilinx IP On BoardCustom Logic

AXI-Lite AXI-ST AXI-MM

VFIFO
Controller

VFIFO
Controller

VFIFO
Controller

Loopback

Raw Packet Data Block

Generator

Checker

User Space
Registers

Targeted Interface
AXI Master

256 x
200 MHz

64
 x

 2
50

 M
H

z

64 x
250 MHz

64 x
250 MHz

64 x
156.25 MHz

64 x
156.25 MHz

Performance
Monitor

G
T

X
 T

ra
ns

ce
iv

er

In
te

gr
at

ed
 B

lo
ck

 fo
r

P
C

I E
xp

re
ss

A
X

I-
S

T
 B

as
ic

 W
ra

pp
er

AXI
MIG

AXI
Interconnect

SI SI

SI SI

M
I DDR3

I/O

A
ur

or
a GTX

Transceiver

http://www.xilinx.com

72 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Chapter 5: Designing with the TRD Platform

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 73
UG882 (v1.2) August 3, 2012

Appendix A

Resource Utilization

Table A-1 and Table A-2 list resource utilization obtained from the map report during the
implementation phase. The XC7K325T-2FFG900C is the target FPGA.

Note: The reported utilization numbers are obtained with the specific options set for synthesis and
implementation of the design. Refer to the implement script to find the options that are set. A change
in the default options results in a change in the utilization numbers.

Table A-1: Resources for the TRD with the PCIe Link Configured as x4 at a 5 Gb/s
Link Rate

Resource Utilization Total Available
Percentage

Utilization (%)

Slice registers 55,797 407,600 13%

Slice LUTs 47,551 203,800 23%

Bonded IOB 126 500 25%

RAMB36E1 69 445 15%

RAMB18E1 4 890 1%

BUFG/BUFGCNTRL 8 32 25%

MMCM_ADV 1 10 10%

GTXE2_CHANNELS 4 16 25%

GTXE2_COMMONS 1 4 25%

PCIE_2_1 1 1 100%

Table A-2: Resources for the TRD with the PCIe Link Configured as x8 at a 2.5 Gb/s
Link Rate

Resource Utilization Total Available Percentage Utilization (%)

Slice registers 56,793 407,600 13%

Slice LUTs 47,668 203,800 23%

Bonded IOB 126 500 25%

RAMB36E1 69 445 15%

RAMB18E1 4 890 1%

BUFG/BUFGCNTRL 8 32 25%

MMCM_ADV 1 10 10%

http://www.xilinx.com

74 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Appendix A: Resource Utilization

GTXE2_CHANNELS 8 16 50%

GTXE2_COMMONS 2 4 50%

PCIE_2_1 1 1 100%

Table A-2: Resources for the TRD with the PCIe Link Configured as x8 at a 2.5 Gb/s
Link Rate (Cont’d)

Resource Utilization Total Available Percentage Utilization (%)

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 75
UG882 (v1.2) August 3, 2012

Appendix B

Register Description

This appendix describes registers most commonly accessed by the software driver.

The registers implemented in hardware are mapped to base address register (BAR0) in the
PCIe integrated Endpoint block.

Table B-1 shows the mapping of multiple DMA channel registers across the BAR.

Registers in DMA for interrupt handling are grouped under a category called common
registers, which are at an offset of 0x4000 from BAR0.

Figure B-1 shows the layout of registers.

Table B-1: DMA Channel Register Address

DMA Channel Offset from BAR0

Channel-0 S2C 0x0

Channel-1 S2C 0x100

Channel-0 C2S 0x2000

Channel-1 C2S 0x2100

http://www.xilinx.com

76 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Appendix B: Register Description

The user logic registers are mapped as shown in Table B-2.

DMA Registers
This section describes certain prominent DMA registers used very frequently by the
software driver. For a detailed description of all registers available, refer to the Northwest
Logic DMA Back-End Core User Guide and Northwest Logic DMA AXI DMA Back-End Core
User Guide, available in the k7_pcie_dma_ddr3_base/design/ipcores/dma/doc
directory.

X-Ref Target - Figure B-1

Figure B-1: Register Map

Table B-2: User Register Address Offsets

User Logic Register Group Range (Offset from BAR0)

PCIe performance Registers
Design version and status Registers

0x9000–0x90FF

User Application 0 Registers 0x9100–0x91FF

User Application 1 Registers 0x9200–0x92FF

Packetized VFIFO Registers 0x9300–0x93FF

NWL Packet DMA

Target Interface

PCIe Core

BAR 0

Engine Registers

DMA Engine Register

Reg_next_desc_ptr

Reg_sw_desc_ptr

DMA Completed
Byte Count

User Space Registers

PCIe Performance
Monitor Registers

Configuration and
Status Registers

DMA Common
Registers

UG882_aB_01_011012

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 77
UG882 (v1.2) August 3, 2012

DMA Registers

Channel Specific Registers
The registers described in this section are present in all channels. The address of the
register is channel address offset from BAR0 (refer to Table B-1) + the register offset.

Engine Control (0x0004)

Table B-3: DMA Engine Control Register

Bit Field Mode
Default
Value

Description

0 Interrupt Enable RW 0 Enables interrupt generation

1 Interrupt Active RW1C 0
Interrupt active is set whenever
an interrupt event occurs. Write '1'
to clear.

2 Descriptor Complete RW1C 0

Interrupt active was asserted due
to completion of descriptor. This
is asserted when a descriptor with
interrupt on completion bit set is
seen.

3 Descriptor Alignment Error RW1C 0

This causes interrupt when a
descriptor address is unaligned,
and that DMA operation is
aborted.

4 Descriptor Fetch Error RW1C 0

This causes interrupt when a
descriptor fetch errors, i.e.,
completion status is not
successful.

5 SW_Abort_Error RW1C 0
This is asserted when a DMA
operation is aborted by software.

8 DMA Enable RW 0

Enables the DMA engine. After
enabled, the engine compares the
next descriptor pointer and
software descriptor pointer to
begin execution.

10 DMA_Running RO 0 Indicates DMA in operation.

11 DMA_Waiting RO 0
Indicates DMA waiting on
software to provide more
descriptors.

14 DMA_Reset_Request RW 0

Issues a request to user logic
connected to DMA to abort
outstanding operation and
prepare for reset. This is cleared
when user acknowledges the reset
request.

15 DMA_Reset RW 0
Assertion of this bit resets the
DMA engine and issues a reset to
user logic.

http://www.xilinx.com

78 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Appendix B: Register Description

Next Descriptor Pointer (0x0008)

Software Descriptor Pointer (0x000C)

Completed Byte Count (0x001C)

Common Registers

The registers described in this section are common to all engines. The register addresses
are located at the given offsets from BAR0.

Table B-4: DMA Next Descriptor Pointer Register

Bit Field Mode
Default
Value

Description

[31:5] Reg_Next_Desc_Ptr RW 0

Next Descriptor Pointer is
writable when DMA is not
enabled. It is read only when
DMA is enabled.

This should be written to
initialize the start of a new
DMA chain.

[4:0] Reserved RO 5'b00000 Required for 32-byte alignment

Table B-5: DMA Software Descriptor Pointer Register

Bit Field Mode
Default
Value

Description

[31:5] Reg_SW_Desc_Ptr RW 0

Software Descriptor Pointer is
the location of the first
descriptor in a chain that is still
owned by the software

[4:0] Reserved RO 5'b00000 Required for 32-byte alignment

Table B-6: DMA Completed Byte Count Register

Bit Field Mode
Default
Value

Description

[31:2] DMA_Completed_Byte_Count RO 0

Completed byte count records
the number of bytes that
transferred in the previous one
second. This has a resolution of
4 bytes.

[1:0] Sample Count RO 0
This sample count increments
every time a sample is taken at
1 second interval

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 79
UG882 (v1.2) August 3, 2012

User Space Registers

Common Control & Status (0x4000)

User Space Registers
This section describes the custom registers implemented in the user space. All registers are
32-bit wide. Register bits positions are to be read from 31 to 0 from left to right. All bits
undefined in this section are reserved, and return zero on read. All registers would return
default values on reset. Address holes return a value of zero on being read.

All registers are mapped to BAR0 and relevant offsets are provided.

Design Version and Status Registers

Design Version (0x9000)

Table B-7: DMA Common Control & Status Register

Bit Field Mode
Default
Value

Description

0 Global Interrupt Enable RW 0 Global DMA Interrupt Enable

This bit globally enables or disables
interrupts for all DMA engines

1 Interrupt Active RO 0 Reflects the state of the DMA interrupt
hardware output considering the state
is global interrupt enable

2 Interrupt Pending RO 0 Reflects the state of the DMA interrupt
output without considering the state of
global interrupt enable

3 Interrupt Mode RO 0 0 - MSI mode

1 - Legacy interrupt mode

4 User Interrupt Enable RW 0 Enables generation of user interrupts

5 User Interrupt Active RW1C 0 Indicates active user interrupt

23:16 S2C Interrupt Status RO 0 Bit[i] indicates interrupt status of S2C
DMA engine[i]

If S2C engine is not present, then this bit
is read as zero.

31:24 C2S Interrupt Status RO 0 Bit[i] indicates interrupt status of C2S
DMA engine[i]

If C2S engine is not present, then this bit
is read as zero.

Table B-8: Design Version Register

Bit Position Mode Default Value Description

3:0 RO 0001 Subversion number:

0000: Non-AXI design
0001: AXI design

11:4 RO 0001_0000 Version of the design (e.g., for v1.0, the version is
0001_0000)

http://www.xilinx.com

80 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Appendix B: Register Description

Design Status (0x9008)

Transmit Utilization Byte Count (0x900C)

Receive Utilization Byte Count (0x9010)

15:12 RO 0000 Reserved

27:16 RO 0001_0000
_1000

NWL DMA Version

31:28 RO 0001 Device—

0000: Artix-7 FPGA

0001: Kintex-7 FPGA

0010: Virtex-7 FPGA

0011: Virtex-7 XT FPGA

Table B-9: Design Status Register

Bit Position Mode Default Value Description

0 RO 0
DDR3 Memory Controller initialization/calibration done
(design operational status from hardware)

1 RW 1
axi_ic_mig_shim_rst_n - Resets the AXI Interconnect IP
and MIG AXI Interface. When software writes to this
register it self clears after 9 clock cycles

5:2 RO f
ddr3_fifo_empty - indicates the DDR3 FIFO and the
preview FIFOs per port are empty.

Table B-10: PCIe Performance Monitor - Transmit Utilization Byte Count Register

Bit
Position

Mode Default Value Description

1:0 RO 00 Sample count - increments every second

31:2 RO 0

Transmit utilization byte count—This field contains the
interface utilization count for active beats on PCIe
AXI4-Stream interface for transmit. It has a resolution of 4
bytes.

Table B-11: Performance Monitor - Receive Utilization Byte Count Register

Bit
Position

Mode Default Value Description

1:0 RO 00 Sample count - increments every second

31:2 RO 0

Receive utilization payload byte count—This field
contains the interface utilization count for active beats on
PCIe AXI4-Stream interface for receive. It has a resolution
of 4 bytes.

Table B-8: Design Version Register (Cont’d)

Bit Position Mode Default Value Description

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 81
UG882 (v1.2) August 3, 2012

User Space Registers

Upstream Memory Write Byte Count (0x9014)

Downstream Completion Byte Count (0x9018)

Initial Completion Data Credits for Downstream Port (0x901C)

Initial Completion Header Credits for Downstream Port (0x9020)

PCIe Credits Status - Initial Non Posted Data Credits for Downstream Port
(0x9024)

Table B-12: PCIe Performance Monitor - Upstream Memory Write Byte Count Register

Bit Position Mode Default Value Description

1:0 RO 00 Sample count—Increments every second

31:2 RO 0
Upstream memory write byte count—This field contains
the payload byte count for upstream PCIe memory write
transactions. It has a resolution of 4 bytes.

Table B-13: PCIe Performance Monitor - Downstream Completion Byte

Bit Position Mode Default Value Description

1:0 RO 00 Sample count—Increments every second

31:2 RO 0

Downstream completion byte count—This field
contains the payload byte count for downstream PCIe
completion with data transactions. It has a resolution of 4
bytes.

Table B-14: PCIe Performance Monitor - Initial Completion Data Credits Register

Bit Position Mode Default Value Description

11:0 RO 00
INIT_FC_CD captures initial flow control credits for
completion data for host system

Table B-15: PCIe Performance Monitor - Initial Completion Header Credits Register

Bit Position Mode Default Value Description

7:0 RO 00
INIT_FC_CH captures initial flow control credits for
completion header for host system

Table B-16: PCIe Performance Monitor - Initial NPD Credits Register

Bit Position Mode Default Value Description

11:0 RO 00
INIT_FC_NPD captures initial flow control credits for
non-posted data for host system

http://www.xilinx.com

82 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Appendix B: Register Description

PCIe Credits Status - Initial Non Posted Header Credits for Downstream Port
(0x9028)

PCIe Credits Status - Initial Posted Data Credits for Downstream Port (0x902C)

PCIe Credits Status - Initial Posted Header Credits for Downstream Port
(0x9030)

Generator/Checker/Loopback Registers for User APP 0

This section describes registers that can be configured on the raw data Path0 in the user
application space.

Enable Generator (0x9100)

Packet Length (0x9104)

Enable Loopback/Checker (0x9108)

Table B-17: PCIe Performance Monitor - Initial NPH Credits Register

Bit Position Mode Default Value Description

7:0 RO 00
INIT_FC_NPH captures initial flow control credits for
non-posted header for host system

Table B-18: PCIe Performance Monitor - Initial PD Credits Register

Bit Position Mode Default Value Description

11:0 RO 00
INIT_FC_PD captures initial flow control credits for
posted data for host system

Table B-19: PCIe Performance Monitor - Initial PH Credits Register

Bit Position Mode Default Value Description

7:0 RO 00
INIT_FC_PH captures initial flow control credits for
posted header for host system

Table B-20: User App 0 - Enable Generator Register

Bit Position Mode Default Value Description

0 RW 0 Enable traffic generator - C2S0

Table B-21: User App 0 - Packet Length Register

Bit Position Mode Default Value Description

15:0 RW 16'd4096
Packet Length to be generated.
Maximum supported is 64KB size packets. (C2S0)

Table B-22: User App 0 - Enable Loopback/Checker Register

Bit Position Mode Default Value Description

0 RW 0 Enable traffic checker - S2C0

1 RW 0 Enable Loopback - S2C0 <—> C2S0

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 83
UG882 (v1.2) August 3, 2012

User Space Registers

Checker Status (0x910C)

Generator/Checker/Loopback Registers for User APP 1

This section describes registers that can be configured on the raw data Path1 in the user
application space.

Enable Generator (0x9200)

Packet Length (0x9204)

Enable Loopback/Checker (0x9208)

Checker Status (0x920C)

Memory Controller Registers

Registers in Table B-28 through Table B-31 are repeated for each of the four ports of the
Virtual Packet FIFO. The addresses given for each register are in the ascending order (Port
1, Port 2, Port 3, Port 4). Refer to Multiport Virtual Packet FIFO, page 43, for details.

Table B-23: User App 0 - Checker Status Register

Bit Position Mode Default Value Description

0 RW1C 0
Checker error—Indicates data mismatch when set
(S2C0)

Table B-24: User App 1 - Enable Generator Register

Bit Position Mode Default Value Description

0 RW 0 Enable traffic generator - C2S1

Table B-25: User App 1 - Packet Length Register

Bit Position Mode Default Value Description

15:0 RW 16'd4096
Packet Length to be generated. Maximum supported is
64KB size packets. (C2S1)

Table B-26: User App 1 - Enable Loopback/Checker Register

Bit Position Mode Default Value Description

0 RW 0 Enable traffic checker - S2C1

1 RW 0 Enable Loopback - S2C1 <—> C2S1

Table B-27: User App 1 - Checker Status Register

Bit Position Mode Default Value Description

0 RW1C 0
Checker error—Indicates data mismatch when set
(S2C1)

http://www.xilinx.com

84 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Appendix B: Register Description

Start Address (0x9300, 0x9310, 0x9320, 0x9330)

End Address (0x9304, 0x9314, 0x9324, 0x9334)

Write Burst Size (0x9308, 0x9318, 0x9328, 0x9338)

Read Burst Size (0x930C, 0x931C, 0x932C, 0x933C)

Table B-28: Start Address Register

Bit Position Mode Default Value Description

31:0 RW 0
Start address of the DDR3 memory for that
channel

Table B-29: End Address Register

Bit Position Mode Default Value Description

31:0 RW 32'h0100_0000
End address of the DDR3 memory for that
channel. The implemented FIFO logic wraps
around at this address.

Table B-30: Write Burst Size Register

Bit Position Mode Default Value Description

8:0 RW 9'd256
Write Burst Size for AXI-MM write transactions
issued to AXI interconnect SI slot

Table B-31: Read Burst Size Register

Bit Position Mode Default Value Description

8:0 RW 9'd256
Read Burst Size for AXI-MM read transactions
issued to AXI interconnect SI slot

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 85
UG882 (v1.2) August 3, 2012

Appendix C

Directory Structure

This appendix describes the directory structure and explains the organization of various
files and folders.

The design folder contains all the hardware design deliverables:

• The source subfolder contains source code deliverable files.

• The tb subfolder contains test bench related files for simulation.

• The sim subfolder contains simulation scripts for supported simulators for both
Microsoft Windows and Linux operating systems.

• The implement subfolder contains implementation scripts for the design for both
Microsoft Windows and Linux operating systems.

• The ip_cores subfolder contains IP cores required for this design and the DMA
design files.

The doc folder contains the TRD documentation (the user guide and Doxygen generated
html for software driver details).

The configuring_kc705 folder contains programming files and scripts to configure the
KC705 board.

These files are in the top-level directory:

• The readme file provides details on the use of simulation and implementation scripts.

X-Ref Target - Figure C-1

Figure C-1: Directory Structure

UG882_aC_01_011012

k7_pcie_dma_ddr3_base

linux driver

xdma

xrawdata0

xrawdata1

Makefile

source

tb

sim

implement

ip_cores

docdesign

configuring_kc705

xpmon

readme

k7_lin_trd_quickstart

http://www.xilinx.com

86 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Appendix C: Directory Structure

• The k7_trd_lin_quickstart script is used to build and insert driver and GUI
modules, invoke the GUI, and remove the driver modules when the user closes the
GUI window.

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 87
UG882 (v1.2) August 3, 2012

Appendix D

Compiling Linux Drivers

This section provides steps on Linux driver compilation. The Linux driver source code for
the design is available under the directory k7_pcie_dma_ddr3_base/linux_driver.

If the software is modified, rerun k7_trd_lin_quickstart to recompile and load the
driver. This also launches the Application GUI. (Refer to Driver Installation, page 17.)

The user can also run the individual steps detailed in this appendix to get a better
understanding of the driver.

1. Compile the Linux drivers and insert the kernel modules.

Open a terminal window. Navigate to the k7_pcie_dma_ddr3_base/
linux_driver folder. To compile and insert the driver, follow these steps at the
command line in the terminal in the linux_driver folder:

a. To clean the area, type:
$ make clean

b. To compile the files and build the kernel objects, type:
$ make

c. To insert the kernel object files, type:
$ make insert

2. To check the status of the device drivers, at the terminal command line, type:
$ lsmod | more

Look for the drives that are loaded. The xrawdata0 and xrawdata1 modules depend on
the base xdma driver. The lsmod command displays Used by on the xdma_k7 entry as
shown in Figure D-1.

http://www.xilinx.com

88 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Appendix D: Compiling Linux Drivers

3. GUI compilation: Steps are provided for compiling and invoking the GUI.

To compile and invoke the GUI, navigate to the k7_pcie_dma_ddr3_base/
linux_driver/xpmon folder and follow these steps:

a. To clean the area, type:
$ make clean

b. To compile the files, type:
$ make

c. To invoke the GUI, type:
$. /xpmon

To run the application GUI, go to Using the Application GUI, page 19.

4. Remove the device drivers. Steps are provided for unloading the driver.

To unload the driver modules, navigate to the k7_pcie_dma_ddr3_base/
linux_driver folder and execute this command at the command line in the
terminal:
$ make remove

X-Ref Target - Figure D-1

Figure D-1: Loaded Drivers xdma_k7, xrawdata0, xrawdata1

UG882_aD_01_011112

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 89
UG882 (v1.2) August 3, 2012

This step takes a few seconds to free the allocated buffers and remove the three device
drivers. To check that the drivers have been successfully removed, use the lsmod
command in the terminal window again (see Figure D-2).

X-Ref Target - Figure D-2

Figure D-2: Removed Drivers xdma_k7, xrawdata0, and xrawdata1

UG882_aD_02_011112

http://www.xilinx.com

90 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Appendix D: Compiling Linux Drivers

http://www.xilinx.com

Kintex-7 FPGA Base Targeted Reference Design www.xilinx.com 91
UG882 (v1.2) August 3, 2012

Appendix E

Additional Resources

Xilinx Resources
To search the Answer database of silicon, software, and IP questions and answers, or to
create a technical support WebCase, see the Xilinx Support website at:

http://www.xilinx.com/support.

For a glossary of technical terms used in Xilinx documentation, see:

http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf.

References
These documents provide supplemental material useful with this user guide.

1. UG882, Kintex-7 FPGA Base Targeted Reference Design User Guide (this guide)

2. UG798, Xilinx Design Tools: Installation and Licensing Guide

3. UG766, LogiCORE IP Aurora 8B/10B v7.1 User Guide

4. UG477, 7 Series FPGAs Integrated Block for PCI Express User Guide

5. UG626, Synthesis and Simulation Design Guide

6. WP350, Understanding Performance of PCI Express Systems

7. UG476, 7 Series FPGAs GTX Transceivers User Guide

8. UG810, KC705 Evaluation Board for the Kintex-7 FPGA User Guide

9. UG586, 7 Series FPGAs Memory Interface Solutions User Guide

10. UG883, Kintex-7 FPGA Base Targeted Reference Design Getting Started Guide

11. AXI Interconnect IP:
http://www.xilinx.com/products/intellectual-property/axi_interconnect.htm

Additional Useful Sites for Boards and Kits
12. Design advisories by software release for Kintex-7 FPGA KC705 Evaluation Kit

http://www.xilinx.com/support/#nav=sd-nav-link-179661&tab=tab-bk

13. Updated information about the Kintex-7 FPGA Base TRD and Kintex-7 FPGA KC705
Evaluation Kit
www.xilinx.com/kc705

14. KC705 support page
http://www.xilinx.com/products/boards-and-kits/EK-K7-KC705-G.htm

http://www.xilinx.com
http://www.xilinx.com/support/documentation/boards_and_kits/ug882_K7_Base_TRD.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_2/iil.pdf
http://www.xilinx.com/support/documentation/ip_documentation/aurora_8b10b/v7_1/aurora_8b10b_ug766.pdf
http://www.xilinx.com/support
http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ug477_7Series_IntBlock_PCIe.pdf
http://www.xilinx.com/support/index.htm#nav=sd-nav-link-106173&tab=tab-dt
http://www.xilinx.com/support/documentation/white_papers/wp350.pdf
http://www.xilinx.com/support/documentation/user_guides/ug476_7Series_Transceivers.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug810_KC705_Eval_BD.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ug586_7Series_MIS.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug883_K7_KC705_Eval_Kit.pdf
http://www.xilinx.com/products/intellectual-property/axi_interconnect.htm
http://www.xilinx.com/support/#nav=sd-nav-link-179661&tab=tab-bk
www.xilinx.com/kc705
www.xilinx.com/kc705
www.xilinx.com/kc705
http://www.xilinx.com/products/boards-and-kits/EK-K7-KC705-G.htm

92 www.xilinx.com Kintex-7 FPGA Base Targeted Reference Design
UG882 (v1.2) August 3, 2012

Appendix E: Additional Resources

Third Party Resources
Documents associated with other software, tool, and IP used by the base TRD are available
at these vendor websites:

15. Northwest Logic DMA back-end core:
http://www.nwlogic.com/packetdma/

16. Fedora project:
http://fedoraproject.org

Fedora is a Linux-based operating system used in the development of this TRD.

17. The GTK+ project API documentation:
http://www.gtk.org/documentation.php
GTK+ is a toolkit for creating graphical user interfaces (GUI).

http://www.xilinx.com
http://www.nwlogic.com/packetdma/
http://fedoraproject.org
http://www.gtk.org/documentation.php

	Kintex-7 FPGA Base Targeted Reference Design
	Revision History
	Table of Contents
	Introduction
	The Base Targeted Reference Design
	Base TRD Features

	Getting Started
	Requirements
	Hardware Test Setup Requirements
	Simulation Requirements

	TRD Demonstration Setup
	Board Configuration and Bring Up
	Linux Boot Up and Driver Installation
	Using the Application GUI

	Shutting Down the System
	Rebuilding the Base TRD
	Generating the MIG IP Core through CORE Generator Tool
	Implementing the Design Using Command Line Options
	Implementing the Design Using the PlanAhead Design Tool
	Implementing the Design Using the Vivado Tools

	Reprogramming the Base TRD
	Configuration Requirements

	Simulation
	Simulating the Design

	Functional Description
	Hardware Architecture
	Base System Components
	Application Components

	Software Architecture
	Kernel Components

	Performance Estimation
	PCI Express Performance
	Packetized Virtual FIFO Performance
	Measuring Performance

	Designing with the TRD Platform
	Software-Only Modifications
	Macro-Based Modifications
	Software Driver Code Modifications

	Top-Level Design Modifications
	Hardware-Only Modifications
	Hardware and Software Modifications

	Architectural Modifications

	Resource Utilization
	Register Description
	DMA Registers
	Channel Specific Registers

	User Space Registers

	Directory Structure
	Compiling Linux Drivers
	Additional Resources
	Xilinx Resources
	References
	Additional Useful Sites for Boards and Kits
	Third Party Resources

