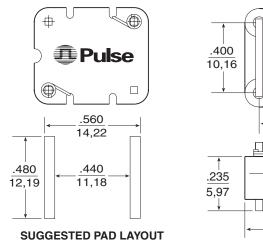
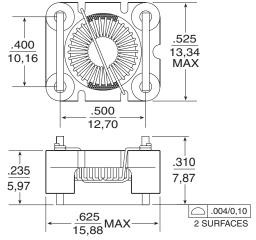
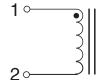
SMT POWER INDUCTORS

Toroid - Military/Aerospace SLED Series


- Ruggedized header with SLED rails for secure board mounting
- Current Rating: up to 3.8ADC
- Inductance Range: 9.4μH to 439μH


Electrical Specifications @ 25°C — Operating Temperature -40°C to +130°C								
Part ⁹ Number	Inductance @ Irated (µH)	Irated (A)	DCR (mΩ)		ET	Inductance @ 0Apc	100 Gauss ET ₁₀₀	1 Amp DC H ₁
			TYP	MAX	(V-µsec)	(µH ±10%)	(V-µsec)	(Orsted)
SLED 25								
PL8500	9.4	3.80	27	32	15.2	10.4	2.65	11.95
PL8501	13.3	3.20	40	46	18.8	14.6	3.13	14.12
PL8502	23	2.40	65	74	24.3	25	4.10	18.46
PL8503	50	1.60	121	135	37.0	56	6.15	27.69
PL8504	75	1.30	181	220	44.3	83	7.47	33.67
PL8505	90	1.20	246	285	49.2	100	8.19	36.93
PL8506	137	1.00	387	425	59.4	152	10.12	45.61
PL8507	200	0.82	585	673	71.3	220	12.17	54.85
PL8508	305	0.66	845	972	85.8	331	14.94	67.34
PL8509	439	0.56	1322	1520	99.6	472	17.83	80.37


- NOTES: 1. The reference inductance at rated DC current is a typical value.
 - Temperature rise is 50°C in typical buck or boost circuits at 250kHz and with the reference ET applied to the inductor.
 - 3. Total loss in the inductor is 380mW for 50°C temperature rise above ambient.
 - To estimate temperature rise in a given application, determine copper and core losses, divide by 380 and multiply by 50.
 - 5. For the copper loss, calculate IDC² X RN.
 - 6. For core loss, using frequency (f) and operating flux density (B), calculate 6.11 x 10⁻¹⁸ x B^{2.7} x f^{2.04}.
- For flux density (B), calculate ET (V-µsec) for the application, divide by ET₁₀₀ from the table, and multiply by 100.
- Limit the DC bias (H) to 46 orsteds. Calculate H by multiplying H₁ from the table by loc of the application.
- Optional Tape & Reel packaging can be ordered by adding a "T" suffix to the part number (i.e. PL8500 becomes PL8500T). Pulse complies to industry standard tape and reel specification EIA481.

Mechanical

Schematic

Dimensions: Inches

Unless otherwise specified, all tolerances are $\pm .010$

For More Information:

Pulse Worldwide Headquarters

2 Pearl Buck Court Bristol, PA 19007 U.S.A.

www.pulseruggedized.com

TEL: 215 781 6400 FAX: 215 781 6403

Performance warranty of products offered on this data sheet is limited to the parameters specified. Data is subject to change without notice. Other brand and product names mentioned herein may be trademarks or registered trademarks of their respective owners.

© Copyright, 2018. Pulse Engineering, Inc. All rights reserved.