- STMicroelectronics STM32: Cortex™-M4 Lab DZ'KE":

" ARM® Keil™ MDK Toolkit featuring Serial Wire Viewer and ETM Trace fools by ARM

For the STM3240G-EVAL board Version 0.72 Robert Boys bob.boys@arm.com

Introduction: For the ST STM3240G-EVAL Evaluation Board with STM32F407

The purpose of this lab is to introduce you to the STMicroelectronics Cortex™-M4 processor family using the ARM® Keil ™
MDK toolkit featuring the IDE pVision®. We will use the Serial Wire Viewer (SWV) and ETM trace on the STM3240G-
EVAL evaluation board from STMicroelectroncs. At the end of this tutorial, you will be able to confidently work with
STM32 processors and MDK. Keil offers a similar board: MCBSTM32F400™. Examples are provided for both boards.

Keil MDK comes in an evaluation version that limits code and data size to 32 Kbytes. Nearly all Keil examples will compile
within this 32K limit. The addition of a license number will turn it into the full, unrestricted version. Contact Keil sales for a
temporary full version license if you need to evaluate MDK with programs greater than 32K. MDK includes a full version of

Keil RTX™ RTOS. No royalty payments are required. RTX source code is now included with all versions of Keil MDK™,
Why Use Keil MDK ?

MDK provides these features particularly suited for Cortex-M3 and
Cortex-M4 users:

1. pVision IDE with Integrated Debugger, Flash programmer
and the ARM® Compiler toolchain. MDK is a turn-key
product with included examples.

2. Serial Wire Viewer and ETM trace capability is included.
A full feature Keil RTOS called RTX is included with
MDK with source code.

3. RTX Kernel Awareness window is updated in real-time.
Kernel Awareness exists for Keil RTX, CMX, Quadros
and Micrium. All RTOSs can compile with MDK.
Awareness can be provided by the supplier.

4. Choice of adapters: ULINK2™, ULINK-ME™, ULINKpro™ or Segger J-Link (version 6 or later). ST-Link is
supported but it has no SWV or ETM support at this time. SWV for ST-Link is planned for 4Q11.

5. Keil Technical Support is included for one year and is renewable. This helps you get your project completed faster.
This document details these features:
1. Serial Wire Viewer (SWV) with ULINK2, ULINK-ME and ULINKpro. ETM Trace using ULINKpro.

Real-time Read and Write to memory locations for Watch, Memory and RTX Tasks windows. These are non-
intrusive to your program. No CPU cycles are stolen. No instrumentation code is added to your source files.
3. Six Hardware Breakpoints (can be set/unset on-the-fly) and four Watchpoints (also called Access Breaks).
4. RTX Viewer: a kernel awareness program for the Keil RTX RTOS that updates while the program is running.

Serial Wire Viewer (SWV):

Serial Wire Viewer (SWV) displays PC Samples, Exceptions (including interrupts), data reads and writes, ITM (printf),
CPU counters and a timestamp. This information comes from the ARM CoreSight™ debug module integrated into the
Cortex-M4. SWV is output on the Serial Wire Output (SWO) pin found on the JTAG/SWD adapter connector.

SWYV does not steal any CPU cycles and is completely non-intrusive except for ITM Debug printf Viewer. SWV is provided
by the Keil ULINK2, ULINK-ME, ULINKpro and the Segger J-Link. Best results are with a ULINK family adapter. The
STMicroelectronics ST-Link adapter does not support SWV at this time.

Embedded Trace Macrocell (ETM):

ETM adds all the program counter values to the data provided by SWV. This allows advanced debugging features including
timing of areas of code (Execution Profiling), Code Coverage, Performance Analysis and program flow debugging and
analysis. ETM requires a special debugger adapter such as the ULINKpro or Segger J-Trace. This document uses a
ULINKpro for ETM. A ULINK2 or ULINK-ME is used for the Serial Wire Viewer exercises in this lab.

1 Copyright © 2011 ARM Ltd. All rights reserved
STMicroelectronics Cortex-M3 Lab with STM3240G-EVAL board www.keil.com

http://www.keil.com/�

STM32 Evaluation Board list, 5 Steps, MDK Install, Useful Definitions 3
Part A: Connecting and Configuring to the target board:
1. Connecting ULINK2, ULINK-ME or ULINKpro to the STM3240G board: 4
2. ULINK2 or ULINK-ME and pVision Configuration: 5
3. ULINKpro and pVision Configuration: 6
4. ST-Link from STMicroelectronics and pVision Configuration: 7
5. Segger J-Link and pVision Configuration: 8
Part B: Blinky Example Programs using a ULINK2 or ULINK-ME:
1. Blinky Example Program using the STM32 and ULINK2 or ULINK-ME: 9
2. Hardware Breakpoints: 9
3. Call Stack + Locals Window 10
4. Variables for Watch and Memory Windows: 10
How to convert Local Variables to view in the Watch or Memory windows: 10
Watch and Memory Windows and how to use them: 11
Configuring the Serial Wire Viewer (SWV): 12
a. For ULINK2 or ULINK-ME: 12
b. For ULINKpro: 13
7. Using the Logic Analyzer (LA) with ULINK2 or ULINK-ME: 14
a. Another use of the Logic Analyzer: 15
8. Watchpoints: Conditional Breakpoints 16
9. RTX Blinky example program with Keil RTX RTOS: 17
10. RTX Kernel Awareness using Serial Wire Viewer (SWV): 18
11. Logic Analyzer Window: Viewing Variables in real-time in a graphical format: 19
12. Serial Wire Viewer (SWV) and how to use it: (with ULINK2) 20
a. Data Reads and Writes: 20
b. Exceptions and Interrupts: 21
c. PC Samples: 22
13. ITM (Instruction Trace Macrocell) a printf feature: 23
Part C: Using the ULINKpro with ETM Trace
1. Target Selector Box: 24
2. Blinky_Ulp Example 25
3. Code Coverage: 26
4. Performance Analysis: 27
5. Execution Profiling: 28
6. In-the-weeds Example: 29
7. Configuring the ULINKpro ETM Trace: 30
8. Serial Wire Viewer Summary: 31
9. Modifying the processor speed: 32
10. Keil Products and contact information: 33
2 Copyright © 2011 ARM Ltd. Al rights reserved

STMicroelectronics Cortex-M3 Lab with STM3240G-EVAL board www.keil.com

http://www.keil.com/�

STM32 Evaluation Boards:
Keil makes six STM32 evaluation boards plus several with STR7 and STR9 processors. Examples are provided.

Keil part number Processor Characteristics Debug Connectors ST board equivalent
MCBSTM32™ STM32F103VB monochrome LCD ~ JTAG/SWD STM32F10X-128K-EVAL (color LCD)
MCBSTM32E™ replaced by EXL STM32F103ZE color LCD Cortex Debug and ETM STM3210E-EVAL
MCBSTM32EXL™ STM32F1032G color LCD Cortex Debug and ETM STM3210E-EVAL

MCBSTM32C™ STM32F107VC color touch LCD ~ Cortex Debug and ETM STM3210C-EVAL
MCBSTM32F200™ Cortex-M4: MCBSTM32F400™

Keil MDK provides example projects for these STMicroelectronics boards:

CQ-STARM EK-STM32F STM32-Discovery ~ STM32F10X-EVAL STM32L152-EVAL
STM32100E-EVAL Cortex-M4: STM3240G-EVAL STM32F4-Discovery (MDK has examples for this board)

Five Steps to Get Connected and Configured:
1. Physically connect a ULINK to the STM3240G or other target board. Power both of these appropriately.
2. Configure pVision to use a ULINK2, ULINK-ME or ULINKpro to communicate with the JTAG or SWD port.
3. Configure the Flash programmer inside pVision to program the STM32 internal flash memory.
4. If desired, configure the Serial Wire Viewer. Add the STM32F4xx_SWO.ini initialization file (see below).
5. If desired, configure the ETM trace with the ULINKpro. Add the STM32F4xx_TP.ini initialization file (see below).

STM32 processors need a special .ini file that configures the CoreSight Serial Wire Viewer and ETM trace. If you do not
intend to use SWV or ETM you do not need this file. It is entered in the Options for Target window under the Debug tab.
can be configured for either SWO or 4 bit Trace Port operation. Instructions are provided on Page 30.

Software Installation:

This document was written for Keil MDK 4.22a or later which contains pVision 4. The evaluation copy of MDK is available
free on the Keil website. Do not confuse pVisiond with MDK 4.0. The number “4” is a coincidence.

Download

To obtain a copy of MDK go to www.keil.com/arm and select the Download icon:

You can use the evaluation version of MDK and a ULINK2, ULINK-ME, ULINKpro or J-Link for this lab. You must make
certain adjustments for non-ULINK adapters such as the ST-Link and not all features shown here will be available.

The addition of a license number converts the evaluation into a full, unrestricted copy of MDK.

The ULINKpro adds Cortex-M3 ETM trace support. It also adds faster programming time and better trace display. Most
STMuicroelectronics Cortex-M3/M4 parts are equipped with ETM. All have SWV.

JTAG and SWD Definitions: It is useful to have an understanding of these terms:
JTAG: JTAG provides access to the CoreSight debugging module located on the STM32 processor. It uses 4 to 5 pins.

SWD: Serial Wire Debug is a two pin alternative to JTAG and has about the same capabilities except no Boundary Scan.
SWD is referenced as SW in the pVision Cortex-M Target Driver Setup. See page 5, middle picture.

SWV: Serial Wire Viewer: A trace capability providing display of reads, writes, exceptions, PC Samples and printf.
SWO: Serial Wire Output: SWV frames usually come out this one pin output. It shares the JTAG signal TDIO.
Trace Port: A 4 bit port that ULINKpro uses to output ETM frames and optionally SWV (rather than the SWO pin).
ETM: Embedded Trace Macrocell: Provides all the program counter values. Only the ULINKpro works with ETM.

Example Programs: See www.keil.com/st for additional information.

Example projects for STMicroelectronics boards are found in C:\Keil\ARM\boards\ST and in C:\Kei\ARM\boards\Keil for
Keil boards. Most example projects are pre-configured to use a ULINK2 or a ULINK-ME. Serial Wire Viewer is not
usually configured: you can do this yourself easily. Projects that contain a Ulp in their name are configured to use a
ULINKpro and SWV and ETM are pre-configured. It is easy to select different debug adapters in pVision.

Most example projects will compile within the 32 K code and data limit of the evaluation version of MDK. An exception is
LCD_BIinky. A compiled executable called Blinky.axf file is provided to allow you to run, evaluate and debug these
programs. If you attempt to compile these projects, the Blinky.axf file will be erased. It is a good idea to back this file up.

3 Copyright © 2011 ARM Ltd. All rights reserved
STMicroelectronics Cortex-M3 Lab with STM3240G-EVAL board www.keil.com

http://www.keil.com/�
http://www.keil.com/arm�
http://www.keil.com/st�

Part A)
1) Connecting ULINK2, ULINK-ME or ULINKpro:

The STM3240G is equipped with the new ARM standard 20 pin Hi-
Density connector for JTAG/SWD, SWO and ETM access as shown
pointed to by the pen. It is labeled CN13: Trace

The legacy 20 pin JTAG connector is also provided. This provides
JTAG, SWD and SWO access. No ETM is available on this
connector.

A 10 pin connector in the same form factor as the 20 pin Hi-Density
exists but is not provided on the STM3240G. This 10 pin provides
JTAG, SWD and SWO access in a much smaller footprint. This
connector is supported by ULINK2 and ULINK-ME with a special
supplied cable. It is shown in the ULINK-ME photo below indicated
by the red arrow.

The 20 pin connector CN13 provides JTAG, SWD, SWO and adds 4 bit ETM support and co
Connecting a ULINK2 or ULINK-ME:

Legacy 20 Pin JTAG Connector:

A ULINK?2 plugged to the STM3240G board is pictured on the first
page of this document.

The ULINK-ME is pictured here and the arrow points to the 10 pin
Hi-Density connector.

20 Pin Connector: Keil does have a 10 pin to 20 pin adapter cable
available to connect to this connector and is supplied with ULINK-
ME. The first 10 pins on the 20 pin replicate the 10 pin.

The second 10 pins on the 20 pin contain the five ETM signals.

Connecting a ULINKpro:

The ULINKpro connects to a STM32 board with its standard 20 pin Hi—Density connector or the standard JTAG connector
with a supplied adapter.

In order to use ETM trace you must connect the ULINKpro to the 20 pin Hi-density connector as shown below:
If you use the legacy 20 pin connector you can use JTAG, SWD and SWV but not ETM.
Pictured is a ULINKpro with the STM3220F-EVAL from STMicroelectronics (below) and the Keil MCBSTM32C (right).

- \." \

nnects to the ULINKpro.

4 Copyright © 2011 ARM Ltd. All rights reserved
STMicroelectronics Cortex-M3 Lab with STM3240G-EVAL board www.keil.com

http://www.keil.com/�

2) ULINK2 or ULINK-ME and pVision Configuration:

It is easy to select a USB debugging adapter in pVision. You must configure the connection to both the target and to Flash
programming in two separate windows as described below. They are each selected using the Debug and Utilities tabs.

This document will use a ULINK2 or ULINK-ME as described. You can substitute a ULINKpro with suitable adjustments.

Serial Wire Viewer (SWV) is completely supported by these two adapters. They are essentially the same devices electrically
and any reference to ULINK?2 in this document includes the ME. STM32 processors require an .ini file to configure the

SWV or ETM features. The ULINKpro, which is a Cortex-Mx ETM trace adapter, has all the features of a ULINK2 with the
advantages of faster programming time, adds ETM trace support and an enhanced Trace Data window.

Step 1) Select the debug connection to the target:

1. Assume the ULINK?2 is connected to a powered up STM32 target board, pVision is running in Edit mode (as it is
when first started — the alternative to Debug mode) and you have selected a valid project. The ULINK2 is shown

connected to the STM3240G-EVAL board on page 1.

2. Select Options for Target EAN or ALT-F7 and select the Debug tab. | Linker Debug | Uiites |

In the drop-down menu box select ULINK as shown here:

3. Select Settings and the next window below opens up. This is the

control panel for the ULINK 2 and ULINK-ME (they are the same). 1

& se: IULINK Cortex Debugger

x|

j Settings |

4. InPort: select SWJ and SW. Serial Wire Viewer (SWV) will not work with JTAG selected. If you are not going to
use SWV with the SWO port or will use it with the 4 bit trace port selected, you can use JTAG.

5. Inthe SW Device area: ARM CoreSight SW-DP MUST be displayed. This confirms you are connected to the
target processor. If there is an error displayed or it is blank this must be fixed before you can continue. Check the
target power supply. Cycle the power to the ULINK and the board.

TIP: To refresh this screen select Port: and change it or click OK once to leave and then click on Settings again.

TIP: You can do regular debugging using JTAG. SWD and JTAG operate at approximately the same speed. Serial Wire

Viewer (SWV) will not operate in JTAG mode.

Step 2) Configure the Keil Flash Programmer:
Click on OK once and select the Utilities tab.
Select the ULINK similar to Step 2 above.

Click Settings to select the programming
algorithm if it is not visible or is the wrong one.

9. Select STM32F4xx Flash as shown below or the
one for your processor:

10. Click on OK once.

TIP: To program the Flash every time you enter Debug
mode, check Update target before Debugging.

11. Click on OK to return to the pVision main screen.
Select File/Save All.

12. You have successfully connected to the STM32
target processor and configured the puVision Flash
programmer.

TIP: The Trace tab is where you configure the Serial
Wire Viewer (SWV) and ETM trace if you have a
ULINKpro. You will learn to do this later.

TIP: If you select ULINK or ULINKpro, and have the
opposite ULINK physically connected to your PC; the
error message will say “No ULINK device found”. This
message actually means that pVision found the wrong Keil
adapter connected. Merely select the one connected.

x
Debug ITmce | Flash Downloadl
~ULINK USB - JTAG/SW Adapter SW Device
Serial No: [V789FEE | IDCODE | Device Name | Hove
SWDIO | G (x2BAD1477 ARM CoreSight SW-DP]
ULINK Version: [ULINK2 == |
Device Family: [Cortex-M Do
T | A, & utomatic Detection D CODE: |
¥ SWJ Por: -I £ Wanual Configuration Dievice Mame: |
Mz Clock: | 1MHz 'I Add | Delete Llpdatel B len: I
~Debug
Connect & Reset Options Cache Options Download Options
Connect: | Nomal 7| Reset:[Atodetect x| | | ¥ Cache Code I Verfy Code Download
) Resel it Cnmiact [¥ Cache Memory | | I Download to Flash
x|
Debug | Trace Flash Download I
— Download Function RAM for Algorithm
" Emse Full Chip [P
LOAD P rogram
‘F; % Erase Sectors [V Verfy Start: (20000000 Size: 0200
¢ DonctErmse |~ Resetand Run

— Programming Algorithm

Description

I Device Type | Device Size |

Address Range I

STM32F e Flash

On-chip Flash

™ D8000000H - 080FFFFFH

Start: |[b(DEDDDDDD Size: | b<00100000

Add Remove

0K | Cancel

STMicroelectronics Cortex-M3 Lab with STM3240G-EVAL board

Copyright © 2011 ARM Ltd. All rights reserved

www.keil.com

http://www.keil.com/�

3) ULINKpro and pVision Configuration:

Step 1) Select the debug connection to the target:

1. Assume the ULINKpro is connected to a powered up STM32 target board, pVision is running in Edit mode (as it is
when first started — the alternative to Debug mode) and you have selected a valid project. The ULINKpro is shown
connected to the STM3240G-EVAL board on page 4.

2. Select Options for Target &N or ALT-F7 and select the Debug tab. In the drop-down menu box select the ULINK

Pro Cortex Debugger as shown here:

Select Settings and Target Driver window below opens up:
In Port: select SWJ and SW. SWV will not work with JTAG selected.
In the SW Device area: ARM CoreSight SW-DP MUST be displayed. |

Linker Debug | Utiites |

o ge IULINK Pra Cortex Debugger j Settings |

x|

This confirms you are connected to the target processor. If there is an error displayed or is blank this must be fixed
before you can continue. Check the target power supply. Cycle the power to the ULINK and the board.

TIP: To refresh this screen select Port: and change
it or click OK once to leave and then click on
Settings again.

TIP: You can do regular debugging using JTAG.
SWD and JTAG operate at approximately the same
speed. Serial Wire Viewer (SWV) will not operate
in JTAG mode unless the ULINKpro is using the
Trace Port to output the trace frames.

This option is selected in the Trace tab.

Step 2) Configure the Keil Flash Programmer:

1. Click on OK once and select the Utilities
tab.

2. Select ULINKpro similar to Step 2 above.
Click Settings to select the programming

algorithm if one is not visible or is the wrong one.

Select STM32F4xx Flash as shown below or the one for your processor:

Click on OK once. Select File/Save All.

TIP: To program the Flash every time you enter Debug mode, check Update target before Debugging.
1. Click on OK to return to the pVision main screen.

2. You have successfully connected to the STM32 target processor and selected the pVision Flash programmer.

TIP: If you select ULINK or ULINKpro, and have
the opposite ULINK physically connected; the error
message will say “No ULINK device found”. This
message actually means that pVision found the
wrong Keil adapter connected.

TIP: A ULINKpro will act very similar to a
ULINK2. The trace window (Trace Data) will be
quite different from the ULINK2 Trace Records as it
offers additional features.

Trace Data is linked to the Disassembly and Source
windows. Double-click on a trace frame and it will
be located and highlighted in the two windows.

TIP: pVision windows can be floated anywhere.
You can restore them by setting Window/Reset
Views to default.

x
Debug |T|E|ce | Flash Dowrload |
 ULINK USB - JTAG/SW Adapter — —SW Device
Serial No: [VO789FBE -] IDCODE | Device Name [Hoye
SWDIO | @ 0<2BAD1477 ARM CoreSight SW-DP 1] |
ULINK Version: [ULINK2 = p
Device Family: ICortax—M DUW”l
T LT I\ﬂ R & Automatic Detection I CODE: I
V¥ SWJ Port: £ blenual Configwation,— DeviceMame: [
Max Clock: |1MHz 'l Add | [elete | pdate | IR e I
— Debug
Connect & Reset Options Cache Options Download Options
Connect: [Nomal | Reset:[Autodetect | | | I Cache Code I Verfy Code Download
e W Cache Memory | | [T Download to Flash
[ok || cance | Help
x
Debug | Trace Hash Download |
— Download Function RAM for Algorithm
LORAD " Frase Ful Chip W Program
' Erase Sectors [Verfy Start: [220000000 Size: [0x0800
" DonotErase [~ Resetand Run
—Pi ing Algarithm
Description | Device Type | Device Size | Address Range I
STM32F & Flash On-chip Flash M 08000000H - DBOFFFFFH
Start: II})(DSDDDDDD Size: 200100000
Add | Remove |
ok | cancel | Help

STMicroelectronics Cortex-M3 Lab with STM3240G-EVAL board

Copyright © 2011 ARM Ltd. All rights reserved

www.keil.com

http://www.keil.com/�

4) ST-Link from STMicroelectronics and pVision Configuration:

The economical ST-LINK can be used with pVision to provide stable JTAG or SWD debugging. It does not provide Serial
Wire Viewer, on-the-fly Watch and Memory updates and write capability, on-the-fly breakpoint setting or Watchpoints.

Step 1) Select the debug connection to the target:

1. Assume the ST-LINK is connected to a powered up STM32 target board, pVision is running in Edit mode (as it is
when first started — the alternative to Debug mode) and you have selected a valid project.
Important TIP: The STM3240G contains a built-in ST-LINK V2 via the USB port. You can use this device
instead of an external ST-Link.

2. Select Options for Target &N or ALT-F7 and select the Debug tab. In the drop-down menu box, select the ST-

LINK Debugger as shown here:
Linker Debug | Uites |

3. Select Settings and Target Driver window below opens up: Use: [ST 0k Dobosaer S |
In Protocol select either JTAG or SWD. You would only have to
select SWD if your target board only has the two SWD signals and
not the full set of JTAG signals. ST-LINK does not yet support SWV. x|

Step 2) Configure the Keil Flash Programmer: Protocal

5. Click on OK once and select the Utilities tab. (= JTAG

6. Select the ST-Link Debugger similar to Step 2 above. ' SWD

7. You do not select any Flash algorithm. ST-LINK does this automatically.

3. Click on OK twice to return to the pVision main screen. ok | _ cace

4. You have successfully connected to the STM32 target processor and selected the ST-

Link as your debugger.
5. Select File/Save All.

TIP: You do not need to click on the Load icon to program the Flash. Simply enter Debug mode and the Flash will be
automatically programmed.

TIP: You do not need the Initialization ini file since the ST-Link does not yet support either SWV or ETM trace.

ST-Link Segger J-Link

7 Copyright © 2011 ARM Ltd. All rights reserved
STMicroelectronics Cortex-M3 Lab with STM3240G-EVAL board www.keil.com

http://www.keil.com/�

5) Segger J-Link and pVision Configuration:

The J-Link (black box) version 6 or higher provides Serial Wire Viewer capabilities. It provides all debug functions that the
Keil ULINK2 provides. This includes breakpoints, watchpoints, memory read/write and the RTX Viewer. J-Link displays
exceptions and PC Samples but does not provide ITM, data R/W trace frames in MDK 4.22. Segger has the new J-Link Ultra
which is faster. Segger also provides a J-Trace for the Cortex-M3 ETM trace but this has not been tested with MDK for this
document. pVision will do an automatic firmware update on the J-Link if necessary. pVision contains all needed drivers.

The J-Link is challenged by a high output on the SWO pin especially where the Logic Analyzer is concerned. Make sure you
select only that data that you really need. Disable all others and that can include ITM 31 and 0. Lower the rate the variable is
changed or sample it if it is changing too fast. Try disabling the timestamps but some functions need them to operate and the
trace may then stop operating. Sometimes you must stop the program to see trace frames. We are working on these issues.

The J-Link is configured using very similar windows as with the ULINK2. This include SWV configuration. The J-Link
uses an Instruction Trace window similar to the ULINKpro. If you double click on a PC Sample frame, that instruction will
be highlighted in the Disassembly and Source windows. The J-Link does not display any ETM frames. Use the J-Trace.

If you have trouble installing the J-Link USB drivers, go to C:\KeilARM\Segger\USBDriver and execute InstallDrivers.exe.
If the green LED on the J-Link blinks quickly, this means the USB drivers are not installed correctly. This LED should
normally be on steady when in Edit mode and off with periodic blinks when in Debug mode.

1. Assume the J-Link is connected to a powered up STM32 target board, pVision is running in Edit mode (as it is when
first started — the alternative to Debug mode) and you have selected a valid project.

Step 1: Select the debug connection to the target:

2. Select Options for Target &N or ALT-F7 and select the Debug tab. In the drop-down menu box select the J-LINK

or J-Trace as shown here:
Linker Debug | Utiities |

3. Select Settings and Target Driver window below opens up: & Use: [Conex /R ILNK i Trace 7] | Settings |
In Port: select SW. SWV will not work with JTAG selected.

5. Inthe SW Device area: ARM CoreSight SW-DP MUST be
displayed. This confirms you are connected to the target processor. If there is an error displayed or is blank this
must be fixed before you can continue. Check the target power supply. Cycle power to the J-Link and the board.

Step 2: Configure the Keil Flash Programmer: |
Click on OK once and select the Utilities tab. | e
) ;) —J-Link / J-Trace Adapter — SW Device
Select the ST-Link Debugger similar to Step 2 TEE] userd =] IDCODE] Devies Name I Have
above Device: Link ARM SWD | @ tc1BADI477 ARM CoreSight SW-DP g |
i ' i i . W [veon di:| vazip Downl
8. Click Settings to select the programming algorithm P [Novia20in 55507 .
H H = = o lax Clo = Automatic: [etection |0 CODE:
if one is not visible or is the wrong one. or 1 o 1| | ratnsin e
9. Select STM32F4xx Flash as shown in the AoCk ||| [A4 | D | Ucbie] ik
directions for the ULINK2 or the algorithm for oo
your processor. Connect & Reset Options | Cache Options Download Options
i . . Connect INﬂrmaI j Reset: IAutndetect j ¥ Cache Code ™ Verify Code Download
Click OK twice to return to the main screen. ¥ Resst stor Comect DE=Rrgy) || I =i
You have now selected the J-Link as your adapter, [etece~ T g Misc
* USB " TCP/P el IR
successfully connected to the STM32 target : A Por (uto: 0 Asodeeat| || vl |
processor and configured the Flash programmer. Sm—l_m I Pira ik Cmd |
Configure the SWV Trace relp

This is done the same way as the ULINK2 or ULINK-ME. J-Link has an extra setting in the trace configuration window to
store trace information on your hard drive called Use Cache File. Hover your mouse over this to get an explanation.

It is important with all Serial Wire Viewer configurations to choose as few signals as possible. The single wire SWO pin is
easily overloaded.

TIP: Itis easy to miss programming the Flash with your latest .axf executable. Select either the Donniead Cptins
Verify Code Download in the Target/Debug/Settings as shown here or select Update Target before q

Debugging: ¥ Update Target before Debugaing o make sure you program the Flash manually by clicking on the Load icon.

8 Copyright © 2011 ARM Ltd. All rights reserved
STMicroelectronics Cortex-M3 Lab with STM3240G-EVAL board www.keil.com

http://www.keil.com/�

Part B)

1) Blinky Example Programs using a ULINK2 or ULINK-ME:

We will connect a Keil MDK development system using the STM3240G-EVAL and a ULINK2 or ULINK-ME. Itis
possible to use the ULINKpro for this example but you must configure it as in 3) ULINKpro and pVision Configuration: on
page 6. This project is pre-configured to use ULINK2.

-

STM32F407 Flash

1. Connect the ULINK?2 as pictured on the first page to the JTAG connector CN14.
. . . . 52

Start pVision by clicking on its desktop icon, e

Select Project/Open Project. Open the file C:\KeilNARM\B0ards\ST\STM3240G-EVAL\Blinky\Blinky.uvproj. If

this file is not included with your version of MDK, please visit www.keil.com/st.
4. Make sure “STM32F207 Flash” is selected. - — ——————

This is where you can create and select different target configurations

such as to execute a program in RAM or Flash. If you want to run in RAM, select STM32F407 RAM.

You then omit the Load step in number 7.
5. This project is configured by default to use either the ULINK2 or ULINK-ME.
6. Compile the source files by clicking on the Rebuild icon. |—| You can also use the Build icon beside it.

LoAD

7. Program the STM32 flash by clicking on the Load icon: ¥# Progress will be indicated in the Output Window.
8. Enter Debug mode by clicking on the Debug icon. @ Select OK if the Evaluation Mode box appears.

Note: You only need to use the Load icon to download to FLASH and not for RAM operation or the simulator.
9. Click on the RUN icon. El Note: you stop the program with the STOP icon. Q

The LEDs on the STM32 board will now blink at a rate determined by the setting of RV1.
Rotate the potentiometer RV1. The LCD screen will display the value of Ad_value as shown below.

Now you know how to compile a program, load it into the STM32 processor Flash, run it and stop it.

2) Hardware Breakpoints:

1. With Blinky running, double-click in the left margin on a darker gray block somewhere appropriate between Lines
162 through179 in the source file Blinky.c as shown below:
A red block is created and soon the program will stop at this point.
The yellow arrow is where the program counter is pointing to in both the disassembly and source windows.
The cyan arrow is a mouse selected pointer and is associated with the yellow band in the disassembly window.
Click on a line in one window and this place will be indicated in the other window.
5. Note you can set and unset hardware breakpoints while the program is running. ARM CoreSight technology does
thiS. | Disassembly a X|
6' The STM32 has 6 hardware breaprints' ::2 # Printf message with AD value to serial port every 1 .sec:c\.ﬂ

A breakpoint does not execute the
instruction it is set to.

TIP: If you get multiple cyan arrows or can’t
understand the relationship between the C source
and assembly, try lowering the compiler
optimization to Level 0 and rebuilding your

:)xOBOOllSA 4825 MOV

Ix0800115C
Jx0800115E
Ix08001160

4B2C
TE00
B1RS8

LDR
LDRE
CeEZ

Ix08001162 FO4F0000 HOV

r5,r4

if (clock 1s) {

0, [pc, #176]
ro, [r0, $#0x00]
r0, 0x0800118E

; BOx08001210

clock 1s = 0O;

r0, #0x00

startup_stm324i0cs r. ADC.

c | & rac | [# seralc’ (£ Binky.c |

project. STM3240G-EVAL Demo
The level is set in Blinky
Options for Target waww keil . com

&N under the

C/C++ tab. AD value = 0x07E2

171 #endif //
172
Mi73
174
175
176

sprintf (text,

RD print = AD wvalue;

"AD walue = 0x%T04X",

AD print):

/* Printf message vith AD value to serial port every 1 second

if (clock 1s3) {

STMicroelectronics Cortex-M3 Lab with STM3240G-EVAL board

Copyright © 2011 ARM Ltd. All rights reserved

www.keil.com

http://www.keil.com/�

3) Call Stack + Locals Window:

Local Variables:

Starting with MDK 4.22 the Call Stack and Local windows are incorporated into one integrated window. Whenever the
program is stopped, the Call Stack + Locals window will display call stack contents as well as any local variables belonging
to the active function. If possible, the values of the local variables will be displayed and if not the message <out of scope>
will be displayed.

1. Shown is the Locals window for the main function with the hardware breakpoint active from the previous page.

2. The contents of the local variables AD_value and AD_Print are displayed.

3. With the breakpoint set as in the previous page, as you click on RUN, these locals will update as appropriate.
TIP: This is standard “Stop and Go” debugging.

. . . Call Stack + Locals b4
ARM CoreS|ght debugglnq technology is much Name | LocationsValue | 1yme
better than this. You can display global or static o % main 0:0800105E int f0
variables updated in real-time while the program is i @ AD_value — auto - unsigned short
running. No additions or changes to your code are “ @ AD_print auto - unsigned short

required. This is not possible with local variables.

Ca” StaCk (#21Call Stack + Locals | EE] Memory 1 |

The list of called functions is displayed when the program is stopped. This is very useful for debugging when you need to
know which functions have been called and are stored on

the Stack |Ca|l Stack + Locals 1 X
) ; Mame Location/Value Type
1. Remove the hardware breakpomt by double- = @ GLCD_Bargraph 0x08000C30 void flunsigned int,unsigned i...
clicking on it. Eﬁﬂﬁﬂﬁﬂgﬁ pﬂfﬂfﬂ-“mig"e: i":
param - unsigned In
. 000000040 param - unsigned int
CIICk on RUN and then STOP @ 0x00000016 param - unsigned int
A window such as this one shows two functions BRSO paamunagned
and their local variables. 0x00000004 auto - int
. . OxD800105E int f[}
4. Each time you click on RUN and then STOP, . @ AD_value _ auto - unsigned short
this window will be updated or changed " @ AD_print auto - unsigned short

depending where the program happens to stop.

Memory 1 |

-;-'jCaII Stack = Locals | &

4) Variables for Watch and Memory Windows:

It would be more useful if we could see the values of variables while the program is still running. Even more valuable would
be the ability to change these values while the program is running. Even more valuable than that would be the ability to do
this without any code stubs in your sources. CoreSight and pVision can do this and more as we shall soon see.

MVision can display global and static variables, structures and peripheral ports as well as physical memory addresses. It
cannot display local variables which are constantly moving in and out of scope as their functions are called.

The locals must first be converted into static or global variables. This is easy to do by moving the variable out of all
functions (including main) to create a global variable or by adding the static keyword in front of the variable declaration. An
example is: static int variable_name;

1. This will ensure that variable always exists and is visible to puVision.

2. If you make this change, you must rebuild your project and Flash the processor again.
TIP: You can edit files in edit or debug mode, but can compile them only in edit mode.
The next page describes how to enter variables in the Watch and Memory windows.

TIP: You will have to re-enter any variables you converted into a window after modifying it because it isn’t the same
variable anymore — it is a static variable or global now instead of a local. Drag ‘n Drop is the fastest way as you will see on
the next page.

TIP: Converting locals to static or global variables usually means the variable is now stored in volatile memory (RAM)
rather than a CPU register. There will be a small time penalty incurred even if on-chip RAM is used..

10 Copyright © 2011 ARM Ltd. All rights reserved
STMicroelectronics Cortex-M3 Lab with STM3240G-EVAL board www.keil.com

http://www.keil.com/�

5) Watch and Memory Windows and how to use them:

The Watch and memory windows will display updated variable values in real-time. It does this through the ARM CoreSight
debugging technology. It is also possible to “put” or insert values into these memory locations in real-time. It is possible to
“drag and drop” variables or enter physical addresses into windows or enter them manually while the program is running.

Watch window:
1. Stop the processor if running and exit debug mode.

2. Find the local variable AD_value in Blinky.c. This will be near line 140 at the start of the main function. Separate

it from AD_print and change it to static as such: unsigned short static AD_value = 0;
unsigned short AD_print = O;

3. Rebuild the project. Program the Flash (Load) and re-enter debug mode. Click on RUN.
. Open the Watch 1 window by clicking on the Watch 1 tab as shown or select View/Watch Windows/Watch 1.
5. InBlinky.c, block AD_value, click and hold and drag it into Watch 1.

Release it and it will be displayed updating as shown here: =)
Rotate the pot RV1 to see AD_value update in real-time. o e o
-~ <Enter expression>

You can also enter a variable manually by double-clicking and
using copy and paste or typing the variable manually. ol Stack - Locals || Wateh 1 | E Memory 1 |
TIP: To Drag ‘n Drop into a tab that is not active, pick up the variable and hold it over the tab you want to open; when it
opens, move your mouse into the window and release the variable.

6. Double click on the value for AD_value in the Watch window. Enter the value 0 and press Enter. 0 will be inserted
into memory in real-time. It will quickly change as the variable is updated often by the program so you probably
will not see this happen. You can also do this in the Memory window with a right-click and select Modify Memory.

Memory window:
1. Drag ‘n Drop AD_value into the Memory 1 window or enter it manually. Rotate the pot and watch the window.

2. Note the value of AD_value is displaying its address in Memory 1 as if it is a pointer. This is useful to see what
address a pointer is pointing to but this not what we want to see at this time.

3. Add an ampersand “&” in front of the variable name and press Enter. Now the physical address is shown
(0x2000_00034). "

Right click in the memory window and select Unsigned/Int. Address: [AD_value Dﬂ

0x20000034: O0S0F080F 00000001 76204441 65756CE1

5. The data contents of AD_value is displayed as shown here: E==0 [ccco01a: 30203020 51353078 00000035 00000000

0x20000054: 00000000 00000000 00000000 Q0000000
0x20000064: 00000000 00000000 00000000 00000000 LI

i .;,-'jCaII Stack = Locals | Watch 1 |

Memory 1

TIP: You are able to configure the Watch and Memory windows and

change their values while the program is still running in real-time without stealing any CPU cycles.
1. AD_value is now updated in real-time. This is ARM CoreSight technology working.

2. Stop the CPU and exit debug mode for the next step. Q and @
TIP: View/Periodic Window Update must be selected. Otherwise variables update only when the program is stopped.
This is just a small example of the capabilities of Serial Wire Viewer. We will demonstrate more features..

How It Works:

MVision uses ARM CoreSight technology to read or write memory locations without stealing any CPU cycles. This is nearly
always non-intrusive and does not impact the program execution timings. Remember the Cortex-M3and M4 are a Harvard
architecture. This means it has separate instruction and data buses. While the CPU is fetching instructions at full speed,
there is plenty of time for the CoreSight debug module to read or write to memory without stealing any CPU cycles.

This can be slightly intrusive in the unlikely event the CPU and pVision reads or writes to the same memory location at
exactly the same time. Then the CPU will be stalled for one clock cycle. In practice, this cycle stealing never happens.

Remember you are not able to view local variables while the program is running. They are visible only when the program is
stopped in their respective functions. You must change them to a different type of variable to see them update.

11 Copyright © 2011 ARM Ltd. All rights reserved
STMicroelectronics Cortex-M3 Lab with STM3240G-EVAL board www.keil.com

http://www.keil.com/�

6) Configuring the Serial Wire Viewer (SWV):
Serial Wire Viewer provides program information in real-time.
A) SWV for ULINK2 or ULINK-ME: (ULINKpro instructions are on the next page)
Configure SWV:
1. pVision must be stopped and in edit mode (not debug mode).

2. Select Options for Target &N or ALT-F7 and select the Debug tab. B
3. Inthe box Initialization File: enter ..\Blinky ULp\STM32F4xx_SWO.ini You can use the Browse button:
4. Click on Settings: beside the name of your adapter (ULINK Cortex Debugger) on the right side of the window.
5. Select the SWJ box and select SW in the Port: pulldown menu.
6. Inthe area SW Device must be displayed: ARM CoreSight SW-DP. SWV will not work with JTAG.
7. Click on the Trace tab. The window below is displayed.
8. In Core Clock: enter 168 and select the Trace Enable box.
TIP: See Section 8) on page 32 for instructions on changing l x|
the CPU clock speed. i R
9. Select Periodic and leave everything else at default. Eoicag 168 000100 RS B TeeeE=ts
Periodic activates PC Samples. 7T;::|T::e-:-mm UART/NRZ FI-V Encble Prescaler[1 v] Ec[e::?;;“:esperlns‘lmcﬂon
10. Click on OK twice to return to the main pVision SWO Clock Prescaler: [120 e — F?&Eﬁwmwmﬂd
. . leep Cycles
menu. SWYV is now configured. Dl Atodetec Prescaer: 102416 =1 | | 1= | g1 o Store Uik ks
o i S0 Clock: [1166666 Mz [Periodic Period:| 97.524us | | I FOLD: Folded Instructions
Note: The ini file is set to SWV/SWO operation by default. ™ on Data AW Sample 7 EXCTRC: Excsplion Tresing
You must edit it to use the Trace Port and ETM or select the ————
f||e STM32F4XX_TPII’]I YOU Can USG the Conflguratlon Enable: |xFFFFFFFF |?j|.4|.4|st::|¢|u|?j |./23;¢|u|2t::|¢|¢|1j |L5|./|¢|3z:3|./|¢|i |3|./|./|i1$|u|./|3
Wizard when you select Edit in the Debug tab. Piviege [DODOUO0GE | Fot31.2¢F Fon2t6[Pot15.8 [P70l
To Display Trace Records: _ el | =
1. Enter Debug mode.@ =R R
V' | Records
Click on the RUN icon. . Exceptions
Open Trace Records window by clicking on the small arrow beside the Trace icon: Counters

2
3
4. The Race Records window will open and display PC Samples as shown below:
5

When you have completed this page, click on STOP. Q

TIP: If you do not see PC Samples and Exceptions as shown and instead either nothing or frames with strange data, the trace
is not configured correctly. The most probable

; ; x

cause is the Core Clock: frequency is wrong. — =

.] . Type Ov [Mum | Addess | Data | FC |Oy| Cydes | Tmel i’
All frames have a timestamp displayed in CPU FC Sampie 080010024 7772808 5930834003
. FC Sample 08001132H 7117085188 5930907657
cycles and accumulated time. PC Sample 080010DAH TTI0SET? 5330821310
) o) PC Sample 080010CAH 711712156 5330934863
Double-click this window o clear i, S s s S
. L L FC Sampl 0B00T132H 717171108 5930975523
If you I’Ight click inside this window Yyou can see PC s:;ng 08001102H 7117187492 59.30989577
how to filter various types of frames out. ity " peamocAr UREr ik gt covrss
Unselect PC Samples and you will see only Bomtonfen 0 x TN 50
exception frames displayed' Exception Entry 34 X 7117214008 59.31011673
Exception Retum X 0 X 7117214008 5931011673
. . . FC Sampl D300DASCH 7117220260 5931016383
Did you know Exception 15 and 34 were being FC Samle D2D00ESEH 7117236644 59.31030537
activated ? Now you do. This is a very useful FC Somic OB000ASEH TiTsestts 5931057843
; ; ; FC Sampl 13000B93H 7117285796 5931071457

tools for displaying how many times an FC Sample 08000ABOH 7117302180 5331085160 |

exception is firing and when.

TIP: SWV is easily overloaded as indicated by an “x” in the OVF or DIy column. Select only that information needed to
reduce overloading. There are more useful features of Serial Wire Viewer as we shall soon discover.

12 Copyright © 2011 ARM Ltd. All rights reserved
STMicroelectronics Cortex-M3 Lab with STM3240G-EVAL board www.keil.com

http://www.keil.com/�

B) SWV for ULINKQpro:
Configure SWV: This uses the SWO output pin rather than the 4 bit Trace Port that is normally used with the ULINKpro.

1. uVision must be stopped and in edit mode (not debug mode) and with a ULINKpro connected to CN13 or CN14.
2. Select Project/Manage/Components, Environment, Books...
3. InProject Targets box select the Insert icon i and enter ULINKpro and press Enter and then OK.
4. Select ULINKpro on the Select Target drop down box. Hitkere Changes will not affect other targets.
5. Select Options for Target EN or ALT-F7 and select the Debug tab.
6. Inthe Use: box select ULINK Pro Cortex debugger. In the Utilities tab, select ULINK Pro Cortex debugger.
7. Select Settings: select Add and then select STM32F4xx Flash and Add. Click on OK once. Select the Debug tab.
8. Inthe box Initialization File: enter ..\Blinky ULp\STM32F4xx_SWO.ini You can use the Browse button: g
9. Click on Settings: beside the name of your adapter (ULINK Pro Cortex Debugger) on the right side.
10. Make sure SWJ and SW are selected. This exercise will not work with JTAG selected.
11. Click on the Trace tab. The window below is displayed.
12. Core Clock: ULINKpro uses this for calculating timing values. Enter 168 MHz. Select the Trace Enable box.
13. Inthe Trace Port select Serial Wire Output — Manchester. Selecting UART/NRZ will cause an error.
14. Unselect Autodetect. Enter 2 into SWO Clock . ~ L . I
Prescaler: as shown here. c———T—— g Trce | Fash Dowoad
15. Select Periodic and leave everything else at default. Core Clock:|| 152000000 1z ¥ Trace Enble [UnlmtedTrace [~ ETH Tracs Enchle
Selecting Periodic activates PC Samples. ~Trace Por 7 Trace Everts
16. Click on OK twice to return to the main pVision I:Wolgvz‘ifml:lh_j = E:"bll e F;T:C;ie;a‘m;dd
menu. SWV is now configured for the ULINKpro. T FSLSLEELSL?E?M -
17. Rebuild this project and program the Flash with the 91O Cook[B0 WHe | [pejogc P 575205 | | I~ FOLD: ldd tctons
Load icon. Select File/Save All. : [on B A Sele ¥ BIETRC Bosten Trecs
Display Trace Records: L T B e e
@ Piviege: [BODOD000E | Pot31.24 W Pot23.06 [Poi15.8 [Pot 7.0 T
1. Enter Debug mode.
2. Click on the RUN icon. . ok | ceed | i
3. Open the Trace selection window by clicking on the small arrow beside the Trace icon: =D v | Trace Data
4. Select Trace Data and the Trace Data window shown below will open. Exceptions
5. Stop the processor and frames are displayed as shown below: Counters
6. Select various types of frames with the Display: box to filter out various types of frames. The default is ALL.

TIP: The Trace Data window is different than the Trace Records window provided with the ULINK2. Trace Records display
only SWV frames and Trace Data can display both SWV and ETM instruction frames. Note the disassembled instructions
are displayed and if available, the source code

is also displayed. If you want to see all the

program counter values, use the ETM trace
available with most STM32 processors. A

Ulinkpro using ETM trace will also provide
Code Coverage, Performance Analysis and

Execution Profiling in real time.

Clear and Save Trace Records:

You can clear the Trace Data window by
clicking on the Clear icon.

You can also save the contents by clicking on
the Save icon.

|Tra(e Data ax |
" Display: Al = | & - in Al S = R
Time Address / Port Instruction / Data Src Code / Trigger Addr

5041 340 726 5 | X : 0xDB000C32 LDRH 0, [0, #0%00] B

6.041 438 250 s | X: 0x08000C3E BGE 00800022

6,041 535 774 5| X: (x0B000D4C STRH 10, [rl, #0x02]

6.041 633 295 s | X : (x0B000 38 SUB 7,17, #0x01

6041700429 s Exception Entry - ExtIRQ 13

6.041 700 690 5 Exception Exit - BAIRQ 18

6,041 700744 5 Exception Return

5.041 730821 5| X: 0x08000C30 | LDR 10,[pc,#36] ; @0x0B000C58

6,041 825 345 5| ¥ (x0BO003C CMP 17,#00400

6.041 925869 s | X : 0x0B0O00C22 CMP 17,18

6.042023 393 5| X: 0x08000D4E BX Ir j

@lDisaiiemhl}-‘ | ﬂTrace Data

STMicroelectronics Cortex-M3 Lab with STM3240G-EVAL board

13

www.keil.com

Copyright © 2011 ARM Ltd. All rights reserved

http://www.keil.com/�

7) Using the Logic Analyzer (LA) with the ULINK2 or ULINK-ME:

This example will use the ULINK2 with the Blinky example. Please connect a ULINK2 or ULKINK-ME to your STM32
board and configure it for SWV trace. If you want to use a ULINKpro you will have to make appropriate modifications.

MVision has a graphical Logic Analyzer (LA) window. Up to four variables can be displayed in real-time using the Serial
Wire Viewer. The Serial Wire Output pin is easily overloaded with many data reads and/or writes and data can be lost.

This exercise assumes AD_value is still a static variable as modified in Step 2 on page 11.

1. The project Blinky should still be open and is probably still in Debug mode. Click on STOP. Exit Debug mode.
2. Make sure STM32F407 Flash is selected. 5TM32F407 Flash v
3. Create a global variable AD_dbg near line 40 in Blinky.c: unsigned int AD_dbg:
4. Near line 174 add this line, also in Blinky.c, just after AD_print = AD_value; AD_dbg = AD_value;
5. Rebuild the source files, program into Flash using the Load icon and enter debug mode. @
6. Select Debug/Debug Settings and select the Trace tab.
Unselect Periodic and EXCTRC. This is to prevent overload on the SWO pin. Click OK twice.
8. Run the program. . Note: You can configure the LA while the program is running or stopped.
9. Open View/Analysis Windows and select Logic Analyzer or select the LA window on the toolbar.
10. Locate the variable AD_dbg you declared in Step 3 above in Blinky.c.
11. Block AD_dbg and drag it into the LA window and release it. Or click on Setup in the LA and enter it manually.
12. Click on Setup and set Max: in Display Range to OxFFF. Click on Close. The LA is completely configured now.
13. Drag and drop AD_dbg into the Watch 1 window. Its value will now track the pot setting.
14. Adjust the Zoom OUT or the All icon in the LA window to provide a suitable scale of about 0.5 second.
15. Rotate the pot to obtain an interesting ogic Analyzer
waveform as shown here: ’%,%,% mZ;T Uveen "Té
TIP: The Logic Analyzer can display static and global 5 oo U I

variables, structures and arrays. It can’t see locals: make
them static or global. To see peripheral registers, enter
them into the Logic Analyzer and read or write to them.

g

AD_db

1. Select Debug/Debug Settings and select the
Trace tab. S
. . 0 R B st
2. Select On Data R/W Sample. Click OK twice. 75 6563 75718633 e
B Disassembly | B8 Logic Analyzer
3. Run the program. .
Open the Trace Records window and clear X
it by double clicking in it. Type Ov [Nom | Addess | Data | PC__ [Diy| Cyces | Tmels ﬁl
. .. Data Write 200000304 DACSH 0800110CH X 43387341357 36156117797
. Data Write 200000304 DACEH 0800110CH X 43400541357 36167117797
The WlndOW SImIIar bEIOW OpenS up' D:a er 200000304 DACSH 0800110CH X 43401741374 361.68117812
- - Data Write 200000304 DACEH 0800110CH X 43402541357 361.69117757
The first line below says: D:a Wﬁe 20000030H 0ACCH 0300110CH X 43406541357 361.72117797
The instruction at 0x0800_110C caused a i WOOE0H DM GOH X 40l (e
write of data 0X0AC to address i SEe dm o mmm ¢ osEmim san
0X2000 0030 at the |ISted tlme in CPU D:: Wﬁz 20000030H DACEH 0800110CH X 43434141770 351:55118142
— Data Write 20000030H DACTH 0800110CH X 43438941357 361.99117797
Cycles or accumulated Time in seconds. |22y G S Eme G ogim ane
Tl P Th PC I . t t d h I t d D:tt: Wﬁ: 20000030H DACAH 0800110CH X 43452141357 352:1DH?T5?
. Data Wit 20000030H DACEH 0800110CH X 43453341374 36211117812
On [.)ataeR/WCSOaumm:]eIiSnagtlevaze vaouer;aynoluez\e/eefhfs Dat: Wnt: 20000030H DACEH 0800110CH X 43460541763 362.17118136
. Data Wit 200000304 DACTH 0800110CH X 43467741370 362.18117808
p - p . Dat: ‘Nnt: 200000304 DACEH 0800110CH X 43470141357 36225117797
unselected to save bandwidth on the SWO pin. Dats Wit 200000304 OACH OB0OT10CH X 43472541366 36227117807
Data Write 200000304 DACEH 0800110CH X 43474541374 36229117812 ;I
TIP: The ULINKpro will give a more sophisticated
Trace Data window.
Watchpoints are described on the next page.
The next page also demonstrates another use of the Logic Analyzer.
14 Copyright © 2011 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with STM3240G-EVAL board www.keil.com

http://www.keil.com/�

Another Use for the Logic Analyzer:

In Blinky.c, there is a global variable called clock_1s that is imported from IRQ.c. It is activated once a second for use as a
timer. A question might arise: what is the duty cycle of this variable ? You could examine the code to determine this or
instrumentate your code to send it out to a GPIO port to see with a scope...or put the variable in the Logic Analyzer.

1. Locate the global variable clock_1s in Blinky.c around Line 39.

2. Enter this into the Logic Analyzer: either manually or by dragging and dropping. You can do this while the
program is running.

3. Open Setup and either set the Display Range: Max to 0x3 or select Display Type: to Bit. Click on Close.
Adjust the Zoom with IN, Out or All for a suitable display as shown below: You can easily see the duty cycle.

Logic Analyzer

|Sai|.|p . | Load ...| Min Time Max Time: Grid Zoom Code Setup Min/Max Update Screen| Transition I~ Signal Info | Ampliuds
Save .. ’TB-WS 787.9889 = 05s | Shaw | | Auto H Undo | ‘ Stop | [~ Show Cycles [~ Cursor
4095 : : ; : : : : : : : : :]

q

AD_db

clock_1s

0 ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ | 1
o = - f f f f f F— - f f f f f H . -

R]
@ll}i:a::eml:l; | i Logic Analyzer

5. Stop the program. Select the Cursor checkbox.
6. Click on one of the clock 1s spikes and note a fixed red line is created.
7. Ablue line follows the mouse and times are displayed as shown below.
8. Select Signal Info. R
9. Hover the cursor for a few seconds I . . .
and timing information is displayed ;
as shown below in the yellow box. : : : :
TIP: The data writes to the variables listed Tk _
in the LA will be visible in the Trace Time: :?.jouossezzoss E:.foeorSTcse Font Egggﬁz s = 0991933 Hz
. . : : Value: 0 0 0
ReCOI’dS WIndOW' B | PE ;I:E 0x5001118 0x5001118
01—==0 : 110,_d:-1 . i . i i .
[44.0007 5] [45.00824 5, d: 1.0081325]46.68824

Optional Exercise:
1. Create an unsigned int global variable in Blinky.c. An example is unsigned int counter;
2. Inmain() add counter++; as shown here near Line 182:
clock 1s=0;
counter++;
Exit Debug mode, rebuild, program the Flash (Load) and enter debug mode. Click on RUN.
Remove all variables from the Logic Analyzer window. You can use the Kill All icon.
Add counter to the Logic Analyzer window and set Max: to OxFF. Click on RUN if necessary.
Add counter to the watch Window.

Counter will increment and will display as a ramp in the LA. Modify the value in the Watch window and see this
change in real-time in the Logic Analyzer. You do not need to stop the processor to modify the value of counter.

8. Remove all variables from the Logic Analyzer window for the next exercise.

No g~ w

15 Copyright © 2011 ARM Ltd. All rights reserved
STMicroelectronics Cortex-M3 Lab with STM3240G-EVAL board www.keil.com

http://www.keil.com/�

8) Watchpoints: Conditional Breakpoints

The STM32 Cortex-M4 processors have four Watchpoints. Watchpoints can be thought of as conditional breakpoints. The
Logic Analyzer uses watchpoints in its operations. This means in puVision you must have two variables free in the Logic

Analyzer to use Watchpoints.

1. Using the example from the previous page, stop the program. Stay in Debug mode.

2. Click on Debug and select Breakpoints or press Ctrl-B.

3. The SWV Trace does not need to be configured to use Watchpoints. However, we will use it in this exercise.

4. Inthe Expression box enter: “AD_dbg == 0x120” without the quotes. Select both the Read and Write Access.

5. Click on Define and it will be accepted as shown here: x|
6. Click on Close. C”

7. Double-click in the Trace Records window to clear it.

8. Enter AD_dbg into the Logic Analyzer window.

9. Setits Max Display to OxFFF. Click on Close. o
10. Click on RUN. Becess———————
11. Turn the pot to get AD_dbg to equal 0x120. o I?D—d;gl, e ¥ e Fine
12. When AD_dbg equals 0x120, the program will stop. This is Cemmand: | r = ;E:ed

how a Watchpoint works.
Define I Kil Selected Kill Al Closs |

Heo |

13. You will see AD_dbg displayed as 0x120 in the Logic

Analyzer as well as in the Watch window.

TIP: There will probably be a different value displayed in the LCD. This is because difference because of a delay when the
LCD is updated. The trigger point represents the correct value and this will be displayed in the Watch window as well.

14. Note the data write of 0x120 in the Trace Records window shown below in the Data column. The address

the data

written to and the PC of the write instruction is displayed as well as the timestamps. This is with a ULINK2 or

ULINK-ME. The ULINKpro will display a different window. !
15. There are other types of expressions Trace Records

x|
you can enter and they are detailed in Tipe Ovf [Nom | Addess | Dets | PC [Di| Cucles [Tme |-l
; ; Data Witz Z0000030H 01ZH 0B00TI0CH X 118513341350 98766117792
th? Help button in the Breakpoints Data Wite 200000304 0128H 0300T10CH X 118520541760 98767118133
window. Data Wite 20000030H 012AH 0800T10CH X 118521741366 987.68117805
Data Wite 20000030H 012BH 0800T10CH X 118526541374 987.72117812
- - - Data Wite 20000030H 012CH 0800T10CH X 118528941366 987.74117805
16. To repeat this exercise, click on RUN. Data Wrte 200000304 012BH 0300110CH X 118530141753 887.75118127
; ; Data Witz 200000304 012cH 0800T10CH X 118531341352 987.76117793
If the program stops immediately, Data Witz 20000030H 012BH 0800T10CH X 118532541774 987.77118145
; ; ; Data Wite 20000030H 0128H 0800T10CH X 118534341768 987.79118140
enter a dlff_erent value in AD_—dbg in Data Wite 20000030H 0129H 0800T10CH X 118538541350 987.82117792
Watch 1 window and try again. Data Wite 200000304 01Z7H 0300T10CH X 118539741760 987.83118133
Data Wite 20000030H 0126H 0800T10CH X 118540941366 987.84117805
- . Data Wite 20000030H 01ZH 0800T10CH X 118542141741 987.85118117
17. When finished, click on STOP and Data Wite 20000030H 0126H 0800T10CH X 118543341355 987.86117796
; ; ; Data Wite 20000030H 0125H 0300T10CH X 118544541764 987.87118137
delete this Watchpoint by selecting Data Witz 200000304 0124H 0800T10CH X 118545741370 987.88117808
i Data Witz 20000030H 0123H 0800T10CH X 118546341747 987.89118122
Debug a_nd select Breakpoints and Data Wite 20000030H 0122H 0800T10CH X 118548141350 987.90117792
select Kill All. Data Write 200000304 0121H 0200110CH X 118549341772 987.91118143
Data Witz 200000304 0120H 0300T10CH X 118550541376 987.92117813 ZI

18. Leave Debug mode. @

TIP: You cannot set Watchpoints on-the-fly while the program is running like you can with hardware breakpoints.

TIP: To edit a Watchpoint, double-click on it in the Breakpoints window and its information will be dropped down into the
configuration area. Clicking on Define will create another Watchpoint. You should delete the old one by highlighting it and

click on Kill Selected or try the next TIP:

TIP: The checkbox beside the expression in Current Breakpoints as shown above allows you to temporarily unselect or

disable a Watchpoint without deleting it.

16 Copyright © 2011 ARM Ltd. All rights reserved
STMicroelectronics Cortex-M3 Lab with STM3240G-EVAL board www.keil.com

http://www.keil.com/�

9) RTX_Blinky Example Program with Keil RTX RTOS: A Stepper Motor example

Keil provides RTX, a full feature RTOS. RTX is included for no charge as part of the Keil MDK full tool suite. It can have
up to 255 tasks and no royalty payments are required. Source code is provided with all versions of MDK. This example
explores the RTOS project. Keil will work with any RTOS. A RTOS is just a set of C functions that gets compiled with
your project. A real-time awareness viewer for RTX is provided inside pVision.

8.

Start pVision by clicking on its icon on your desktop if it is not already running.
Select Project/Open Project and open C:\KeilARM\Boards\ST\STM3240G-EVAL\RT X_Blinky\Blinky.uvproj.

RTX_Blinky uses the ULINK2 as default: if you are using a ULINKpro, please configure it as described on page 3
and configure the Serial Wire Viewer as on page 13. You only have to do this once for each project — it will be
saved in the project file by selecting File/Save All.

LoAD
To program the Flash manually, click on the Load icon. ##. A progress bar will be at the bottom left.

Enter the Debug mode by clicking on the debug icon @ and click on the RUN icon.
The LEDs and LCD will blink indicating the four waveforms of a stepper motor driver.

Click on STOP @

The Configuration Wizard for RTX:

O N o O A~ WD

Click on the RTX_Conf_CM.c source file tab as shown below on the left below. You can open it with File/Open.
Click on Configuration Wizard at the bottom and your view will change to the Configuration Wizard.

Open up the individual directories to show the various configuration items available.

See how easy it is to modify these settings here as opposed to finding and changing entries in the source code.
This is a great feature as it is much easier changing items here than in the source code.

You can create Configuration Wizards in any source file with the scripting language as used in the Text Editor.
This scripting language is shown below in the Text Editor as comments starting such as a </h> or <i>.

The new pVision4 System Viewer windows are created in a similar fashion. Select View/System Viewer or click

on the icon. i - The window similar to the on the far right opens.

TIP: If you don’t see any System Viewer entries, either the System Viewer is not available for your processor or you are
using an older example project and it needs to be “refreshed” by the following instructions:

H : : : : . . CEEE
Exit Debug mode. Click on the Target Options icon and select the Device tab. Note which processor is e
currently selected. Select a different one, reselect the original processor and click on OK. System Viewer is oeG
now activated. Close this window and select File/Save All. -

/ RTX_Conf_CM.c l L Blinkyc RTX_Conf_CM.c] v x i:z ’
081 #ifndef O5 TICKE —
082 #define OS5 TICH 10000 3 _Espanddl | Colepset | __Heb | :: ,
083 #endif Option | Value RTC
04 ~Task Definitions BKP
088 // </h> é--Numher of concurrent running kasks 7 Woe
086 ~/ <e>Round-Robin Task switching i Mumber of tasks with user-provided stack. WWDGE
gy s -Task stack size [bytes] 200
088 // <i> Enable Round-Robin Task switching - Check for the stack overflow v ™ '
089 #ifndef O5_ROBIN Run in privileged mode - bxCAN
090 #define OS_ROBIN 1 J b of user timers 0 1c ,
091 #endif -S_ysTitk Timer Configuration SP1 3
092 *Timer clock value [Hz] 72000000 USART 3
093 <o>Round 1 in Timeout [ticks] <l1-1 10600 ADC G
094 <ix 2 task will exe 5'7 Flash
095 /. <1» Default: 5 CrRC
038 #ifndef C5_ROBINTOUT DAC
0597 #define O5_ROBINTOUT 5 USB_OTG_FS
nae #endif = UART »

\Jiﬁuw P r—— LI_‘ TextEdier_) Configuration Wizard Ethernet

Text Editor: Source Code Configuration Wizard System Viewer

17 Copyright © 2011 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with STM3240G-EVAL board www.keil.com

http://www.keil.com/�

10) RTX Kernel Awareness using Serial Wire Viewer (SWV):

Users often want to know the number of the current operating task and the status of the other tasks. This information is
usually stored in a structure or memory area by the RTOS. Keil provides a Task Aware window for RTX. Other RTOS
companies also provide awareness plug-ins for pVision.

-
1. Run RTX_Blinky again by clicking on the Run icon. |5 = . —
2. Open Debug/OS Support and select RTX Tasks and System ;:""'" Tﬂ"""""
and the window on the right opens up. You might have to e
grab the window and move it into the center of the screen. Tod g o 7. b4
These values are updated in real-time using the same read .. = T
write technology as used in the Watch and Memory windows. £ i"’-"' “ ’:‘:::b | ——— T,;
Important TIP: View/Periodic Window Update must be selected ! T N T
3. Open Debug/OS Support and select Event Viewer. There is e — Cooamcomm
probably no data displayed because SWV is not configured. '
RTX Viewer: Configuring Serial Wire Viewer (SWV): s (T
We must activate Serial Wire Viewer to get the Event Viewer working.
1. Stop the CPU and exit debug mode. D0 @ Cortex:H Target Drwver Setup]
. Debug | Trace | Flash Dowrload |
Click on the Target Options icon AN next to the target box. e [: o
Select the Debug tab. In the box Initialization File: enter LN Vi[O | | V00| @ D2BAOI4TT - ARM Coreig SWDP DU_DI
- .. Device Family: [Cortex-M ot
ABlinky_ULp\STM32F4xx_SWO.ini or use the Browse ... o T | g
. N [V SWJ Pot:|sw = € Wanual Configuration Device ame:
Click the Settings box next to ULINK Cortex Debugger. o S] || s | vvse]] Fom——
5. In the Debug window as shown here, make sure SWJ is oo —— ——
checked and Port: is set to SW and not JTAG. [mmmm‘] st [] LE o LE VertyCade Dovrond
¥ Reset after Connect ¥ Cache Memory Download to Flash
6. Click on the Trace tab to open the Trace window.
7. Set Core Clock: to 168 MHz and select Trace Enable. i
8. Unselect the Periodic and EXCTRC boxes as shown here: =
9. ITM Stimulus Port 31 must be checked. This is the method —
the RTX Viewer gets the kernel awareness information out to e 155 0000 e .
be displayed in the Event Viewer. It is slightly intrusive. S Ve O TRRTE = I P s con
‘SWO Clock Prescaler: | 142 PC Sampling——————————— W 5 B
10. Click on OK twice to return to pVision. o o [T] | | 1 ot e e
The Serial Wire Viewer is now configured in pVision. SO chacl___pe [P Pt [i | | I rou0 s
11. Enter Debug mode and click on RUN to start the program. 1T Stmive -
12. Select “Tasks and System” tab: note the display is updated. e e
13. Click on the Event Viewer tab.
14. This window displays task events in a graphical format as

shown in the RTX Kernel window below. You probably have
to change the Range to about 1 seconds by clicking on the
ALL and then the + and — icons.

TIP: If Event Viewer doesn’t work, open up the Trace Records and
confirm there are good ITM 31 frames present. Is Core Clock correct ?

Cortex-M3 Alert: pVision will update all RTX information in real-
time on a target board due to its read/write capabilities as already
described. The Event Viewer uses ITM and is slightly intrusive.

The data is updated while the program is running. No instrumentation
code needs to be inserted into your source. You will find this feature
very useful ! Remember, RTX with source code is included with all
versions of MDK.

TIP: You can use a ULINK2, ULINK-ME, ULINKpro or Segger J-Link for these RTX Kernel Awareness windows.

[| |

18

STMicroelectronics Cortex-M3 Lab with STM3240G-EVAL board

Copyright © 2011 ARM Ltd. All rights reserved

www.keil.com

http://www.keil.com/�

11) Logic Analyzer Window: View variables real-time in a graphical format:

pVision has a graphical Logic Analyzer window. Up to four variables can be displayed in real-time using the Serial Wire
Viewer in the STM32. RTX_Blinky uses four tasks to create the waveforms. We will graph these four waveforms.

1. Close the RTX Viewer windows. Stop the program and exit debug mode.
2. Add 4 global variables unsigned int phasea through unsigned int phased to Blinky.c as shown here:

3. Add 2 lines to each of the four tasks Task1 through Task4 in Blinky.c as |} fHdefine IED D 2
. . 029 #define LED CLE 7

shown below: phasea=1; and phasea=0; :the first two lines are shown 030 -
added at lines 084 and 087 (just after LED_On and LED_Off function 031 unsigned int phasea;:
calls). For each of the four tasks, add the corresponding variable 032 unsigned int phaseb:
assignment statements phasea, phaseb, phasec and phased. 033 unsigned int phasec;
. . .) 034 un=igned int phased:

4. We do this because in this simple program there are not enough suitable 035

variables to connect to the Logic Analyzer. 03 #define FI 1

TIP: The Logic Analyzer can display static and global variables, structures and arrays. It can’t see locals: just make them
static. To see peripheral registers merely read or write to them and enter them into the Logic Analyzer.

Lop 7
5. Rebuild the project. Program the Flash ¥#. o k 1 'p ': P2
080 _ task wvoid phaseR (veid) {
6. Enter debug mode @ 081 for (::) {
082 os_evt wait and (0x0001, Oxffff):;
You can run the program at this point. 083 LED On (LED 3);
) . .) 084 phasea = 1; —
Open View/Analysis Windows and select Logic Analyzer or 085 signal_func (t_phaseE);
. = - 088 LED _Off (LED_&):
select the LA window on the toolbar. 057 phagea = 0; —
Enter the Variables into the Logic Analyzer: ggg '

9. Click on the Blinky.c tab. Block phasea, click, hold and drag
up to the Logic Analyzer tab (don’t let go yet!)

10. When it opens, bring the mouse down anywhere into the Logic Analyzer window and release.

11. Repeat for phaseb, phasec and phased. These variables will be listed on the left side of the LA window as
shown. Now we have to adjust the scaling.

12. Click on the Setup icon and click on each of the four variables and set Max. in the Display Range: to 0x3.
13. Click on Close to go back to the LA window.
14. Using the All, OUT and In buttons set the range to 1second or so. Move the scrolling bar to the far right if needed.

15. Select Signal Info and Show Cycles. Click to mark a place move the cursor to get timings. Place the cursor on one
of the waveforms and get timing and other information as shown in the inserted box labeled phasec:

|LugicAnaIyzer a Xl
Setup ... |[Load ... Min Time Max Time Grid Zoom Code Setup Min/Max Update Screen| Transition ¥ Signal Info
o (e D Y o7) R S s I G
- [S D B R
= of L L ° S =
B E A A R
[: : : H H H H H H H : : H
= o] LT i L AN S|) N S T
Y 3 3 3 3 : : : : : : : 3 3 :
: S R N T N A N
= o :] : : : : : : : I :
R R T S AR S S S
] i |phasec
= H Mouse Pos Reference Point Delta
= L [Time: 2765625 5 0s 2765625 s = 0.036158 HZJ
0 i [value: 0 1 -1
241625 ¢ " lpes: /A 0x388 Es
1203593192 1596993192 2046593192
E | ®

@Di;a:;eml)\; | ELugic Analyzer
TIP: You can also enter these variables into the Watch and Memory windows to display and change them in real-time.
TIP: You can view signals that exist mathematically in a variable and not available for measuring in the outside world.

19 Copyright © 2011 ARM Ltd. All rights reserved
STMicroelectronics Cortex-M3 Lab with STM3240G-EVAL board www.keil.com

http://www.keil.com/�

12) Serial Wire Viewer (SWV) and how to use it: (with ULINK2)
a) Data Reads and Writes: (Note: Data Reads but not Writes are disabled in the current version of uVision).
You have configured Serial Wire Viewer (SWV) two pages back in Page 12 under Configuring the Serial Wire Viewer:

Now we will examine some of the features available to you. SWV works with pVision and a ULINK2, ULINK-ME,
ULINKQpro or a Segger J-Link V6 or higher. SWV is included with MDK and no other equipment must be purchased.

Everything shown here is done without stealing any CPU cycles and is completely non-intrusive. A user program runs at full
speed and needs no code stubs or instrumentation software added to your programs.

1. Use RTX Blinky from the last exercise. Enter Debug mode and run the program if not already running.
FR RN
2. Select View/Trace/Records or click on the Trace icon =4 ™ and select Records, -
The Trace Records window will open up as shown here: A comer |
I
The ITM frames are the data from the RTX Kernel — Tt | s Bia [¢ [y G |}
Viewer which uses Port 31 as shown under Num. m B Fr S dvi
Tc_> turn this off select Debug/Debug Sett.lngs and i H fH 53335;3555 33;2;;;;2
click on the Trace tab. Unselect ITM Stim. Port 31, |oa e T oo cootesons Simiis sames
- - - - I™ 3 06H 297614477 248012064
Or you can right click in the trace records window i 7 FFH s 248029123
. IT™ K3l 06H 307192912 2.55994093
and unselect ITM frames to filter them out. m 6 FPH TR 25011440
. . I™ 3 03H 357592912 297954093
TIP: Port 0 is used for Debug printf Viewer. Dot Vit T xooxn ooo0ooon B 2w
. . ™ 3 06H 357614268 298011890
Unselect EXCTRC and Periodic. i 7 P TreuTe 23028540
™ kil FFH 367213728 3.06011440
Select On Data R/W Sample. i 3 i ety R i o
Data Write 20000028H 0000D000H 417614283 3.48011503 LI
Click on OK to return. =
Click on the RUN icon. [Tipe [ovi[Num| Addwss | Dsta | PC _ [O| ks | Tooy =
Data ’.V@e 2000002CH (00000000H 08001258H 53222555815 MZE. BSEDET %3
Double-cick anywhere inthe Trace records
window to clear it. Dot Wit 200000244 00DOODOOH D3DOT1ECH 537462969803 4478 85808174
Data ’.V@e 2000002CH 00000001H 08001242H 53252255557? 4415. 358[}75%1
10. Only Data Writes will appear now. o e o000 ooooooty oeoot Ao EaTaienes 4400 IRa4TETE
Data Write 2000002CH 00000000H 08001258H 537702969819 4480.85808183
TIP: You could have also right clicked on the Data Wite 200000244 0ODOODOIH 080011D6H 537762969573 448135307578
Data Write 20000020H (00000000H 080011B6H 537822969809 4481.85808174
Trace_Rec_ords window to filter the _|TM framesout [pz2 Mo000esi oooooody OR0TTECH Sarsaseonts 4432 350001
but this will not reduce any SWO pin overloads. B 00051 M0N0 el ootceeate adssmeeire
A A Data :.Vr?le 20000020H 00000001H 080011A0H 538123609886 448436341572
What is happening here ? g Mo000eéi oodcoth 000D Eabsisegesrs 4das a0
Data Write 20000020H 00000000H 080011B6H 538302969809 448585808174
1. When Varlab|eS are entered |n the LOglC Analyzer Data Write 20000028H 00000001H 0800120CH 538362969576 4486.35807980 LI
(remember phasea through phased ?), the writes will appear in Trace Records.
The Address column shows where the four variables are located.
The Data column displays the data values written to phasea through phased.
PC I the address of the InstrUClon CaUSing -
the writes. You activated it by selecting On ~ ° .
Dgta R/W Sample in the Trace configuration “Module/ Name Location Tpe
window. I B SRO/CMIM Time.c Module S|
5. The Cycles and Time(s) columns are when T SRC/CMt Event —
these events happened. Module g
TIP: You can have up to four variables in the Logic 0x20000020 unsigned int W,
Analyzer and subsequently displayed in the Trace phaseb 0x20000024 unsigned int l‘
- phasec 020000023 unsigned int -
Records WlndOW. phased 0x2000002C unsigned int /
TIP: If you select View/Symbol Window you can see 0x20000030 05.TID
where the addresses of the variables are. e % -
i t_phaseC X] as_TID
Note: You must have Browser Information selected t_phaseD 0x2000005C 0s_TID El

in the Options for Target/Output tab to use the

Symbol Browser.
TIP: ULINKpro and the Segger J-Link adapters display the trace frames in a different style trace window.

20

STMicroelectronics Cortex-M3 Lab with STM3240G-EVAL board

Copyright © 2011 ARM Ltd. All rights reserved

www.keil.com

http://www.keil.com/�

b) Exceptions and Interrupts:

The STM32 family using Cortex-M3 or M4 processors has many interrupts and it can be difficult to determine when they are
being activated and when. Serial Wire Viewer (SWV) makes the display of exceptions and interrupts easy.

1. Open Debug/Debug Settings and select the Trace tab.

2.

3. Select EXCTRC as shown here:

4. Click OK twice.

5. The Trace Records should still be open.
click on it to clear it.

6. Click RUN to start the program.

Double

You will see a window similar to the one below

with Exceptions frames displayed.
What Is Happening ?

1. You can see two exceptions (11 & 15) happening.

= Entry: when the exception enters.
= Exit: When it exits or returns.

Debug Trace |

Core Clock: | 120.000000 MHz

¥ Tiace Enable

Unselect On Data R/W Sample, PC Sample and ITM Ports 31 and 0. (this is to minimize overloading the SWO port)

x|

r~ Trace Port

SWO Clock Prescaler: 2

Serial Wire Qutput - UART/NRZ j

=
’V [¥ Enable

Prescaler: |1 'I

r~ Trace Events
I™ CPI: Cycles per Instruction

PC Sampling

™ EXC: Exception overhead
™ SLEEP: Sleep Cycles

= Return: When all the exceptions have returned. This is useful to detect tail-chaining.

2. Num 11 is SVCall from the RTX calls.

3. Num 15 is the Systick timer.

4. In my example you can see one data
write from the Logic Analyzer.

5. Note everything is timestamped.

6. The “X” in Ovf is an overflow and some
data was lost. The “X” in DIy means
the timestamps are delayed because too
much information is being fed out the
SWO pin.

TIP: The SWO pin is one pin on the Cortex-M3
family processors that all SWV information is
fed out. The exception is the ULINKpro which

v Autodetect |+ -
@ Presealn, 102718 I~ LSU: Load Store Uit Cycles
SO Clock: || 3750000 Mz I~ Perodic Period: | <Disa I~ FOLD: Folded Instructions
(I~ on Data R/W Sample <:Iv EXCTRC: Exception Tm_'ﬁci -
~ITM Stimulus Ports 7~ —
MY Pot 2423 Pt 1615 Pt 8 7 Pt f O
Enable: |0 7FFFFFFE @WWWW VPVl VviIVIVIVIVZ WWWWWQ:)
Frivilege: [Bx00000008 Fot31.24 ¥ Pon23.16 For 15.8 [~ Port 7.0
5|
Tz Ovf [Num | Addess | Data | PC__ |Dy| Cydes | Tmey =]
Exception Exit 15 166671592813 1388.92994011 —
Exception Retum 0 K 166671593739 1388.52994832
Exception Entry 15 166672792530 1388.9399377!
Exception Exit 15 166672793005 1388 93994171
Exception Retum 0 X 16B672794759 1388.93995632
Exception Retum X 0 X 16B672794759 1388.93995632
Exception Ertry 11 166672813389 1382.94011157
Exception Exit 11 166672813513 1388.94011266
Data Wiite 20000024H 00DOODOOH K 166672816263 1388.54013552
Exception Retum X K 166672816263 1388.94D13552
Exception Ertry 15 166673992530 1388 94993775
Exception Exit 15 166673993086 1382.94994238
Exception Retum 0 X 166673995719 1388.94996432
Exception Entry X 11 XK 166673995719 1388.94896432
Exception Retm X 0 XK 166673995719 1388.94996432
Exception Ertry 11 166674013681 1388.35011401
Exception Exit 11 166674013811 1388.95011509
Exception Entry X 11 X 16BGT4DT5911 138895013259
Exception Retum X 0 X 16B674015911 1388.95013259
Exception Entry 15 166675192532 1338.85993777 o |

can also send SWV out the 4 bit Trace Port. There are limitations on how much information we can feed out this one pin.

These exceptions are happening at a very fast rate. Overloads are gracefully handled.
1.

akm-.
| ¥ mecomas
|[¥] Eeceptiona

Select View/Trace/Exceptions or click on the Trace icon and select Exceptions. | e

2. The next window opens up and more information about the exceptions is displayed as shown.

3. Note the number of times these have happened under Count. This is very useful information in case interrupts come

at rates different from what you

x|
eXpeCt Mum | Name | Count | Total Time | Min Time In I Mex Time In | Min Time Out | Max Time Out | First Time [s Last Time [s -
4. EXxtIRQ are the peripheral ER, : &
H 4 MemManage 0 0s
Interrupts 5 BusFault ’] 0s
. . 6 UsageFault i} Os
5_ YOU can Clear thIS trace WlndOW 1 SvVCall 240 810417 us 1.806 us 59.889 us 57722 us 8118s 76793411243 803.05410092
. . . 12 DbgMan 0 Os
by double-clicking on it. 14 PendSV 0 0s
L. . i i 15 SysTick 2804 16.836ms 3750 us 68.972 us 5.931 ms 7.800s 76765293957 80347293944
6. All this information is displayed |5 R0 : N
in real-time and without stealing |32 %32 : b
CPU cyces! 2ogm 3 &
. . 22 EtIRQ 6 0 0
TIP: Num is the exception number: 2 EaR27 0 02 =

RESET is 1. External interrupts

(ExtIRQ), which are normally attached to peripherals, start at Num 16.

External IRQ 25. Num 16 =16 — 16 = ExtIRQ 0.

For example, Num 41 is also known as 41-16 =

21

STMicroelectronics Cortex-M3 Lab with STM3240G-EVAL board

www.keil.com

Copyright © 2011 ARM Ltd. All rights reserved

http://www.keil.com/�

c) PC Samples:

Serial Wire Viewer can display a sampling of the program counter. If you need to see all the PC values, use the ETM trace
with a Keil ULINKpro. ETM trace also provides Code Coverage, Execution Profiling and Performance Analysis.

SWV can display at best every 64™ instruction but usually every 16,384 is more common. It is best to keep this number as
high as possible to avoid overloading the Serial Wire Output (SWO) pin. This is easily set in the Trace configuration.

1. Open Debug/Debug Settings and select the Trace tab.
2. Unselect EXCTRC, On Data R/W Sample and select Periodic in the PC Sampling area.
3. Click on OK twice to return to the main screen.
4. Close the Exception Trace window — Haasiasis T I : — I _I_I
- | Type Owf | Mum Address Data PC Dby Cycles Time[s] -
and Ieave _Trace Records Open' PC Sample 0800042EH 182132258635 1517.76882196 —
Double-click to clear it. PC Sample 0300042EH 182132275019 1517.76895845
PC Sample 0800042EH 182132251403 1517.765058502
i i i PC Sampl 0800042EH 182132307787 1517.765923156
5‘ CIICk on RUN and thIS WIndOW I PC S:ﬂEI: 0800042EH 182132324171 1517 76936805
- PC Sample 0800042EH 8 05 7 0462
OpenS. PC Sale 0800042EH 182132356535 1517.76964116
PC Sampl 0800042EH 182132373323 151776577765
6' MOSt Of the PC Samples are PC S:mEI: 0200042EH 182132389707 1517.76991422
i 1 .| PC Sampl 08000AA4H 182132406051 151777005076
OtXO|8f00—0|42E YthICh Isa k::ranCh to i Datair’\dnnpt: 2000002CH 0O0000001H 182132413840 1517.77011533
ItselT In a 100p Torever routine. .| PC Sampl 03000AARH 182132422475 151777018729
p PC Szmﬁlz 0800042EH 182132438859 1517.77032382
PC Sampl 0800042EH 182132455243 1517.77046036
7' Stop the progra_m and the I PC Szmﬁlz 0800042EH 182132471627 1517.77055685
D|sassemb|y window will show | PC Sample 0800D42EH 182132488011 1517.77073342
. PC Sample 0800042EH 1821325043585 1517 77086556
thIS Branch: PC Sample 0800042EH 18213252077 1517 77100645
) PC Sample 0800042EH 182132537163 1517.77114302
i | PC Sample 0800042EH 182132553547 1517.77127356 &
8. Not all the PCs will be captured. =l
Still, PC Samples can give you
some idea of where your program is; especially if it
is caught in a tight loop like in this case. _
9. Note: you can get different PC values RO os_mr_sall
depending on the optimization level set 153: void os_tmr_call (U16 info) I L
- - . 1 H /* This function is called when the user timer has expired. arameter *®
In pVISIOﬂ. 155: /% 'info' holds the value, defined when the timer waspcreated. *
156:
10 Set a breakpo”‘]t |n one Of the tasks |n 157: /* HERE: include optional user code to be executed on timeout. =/
Bllnky C E{}OXOBOOOQOB ETFE B os_idle_demﬂn (Ox0EB000408)
L. 158: }
159:
11. Run the program and when the 2e0:
- - - lel: /~ 03 error
breakpoint is hit, the program and trace 162: - ;Ij
collection is stopped.
12. Scroll to the bottom of the Trace Records window and you might see the correct PC value displayed. Usually, it will

be a different PC depending on when the sampling took place.

13. Remove the breakpoint for the next step.

Disassembly

TIP: In order to see all the program
Counter values, use ETM trace with the
ULINKpro. Most STM32 processors
have ETM.

ETM is much superior for program flow
debugging than PC Samples.

157:

158: }

Ll

HERE:
0x0800042C BFOO
C>0x0800042E ETFE

HOP

B

[Eh Disassembly B8 Logic Analyzer |

function
' holds the value, defined when the timer was created.

include optional

1s called when the user timer has expired. Farameter

user code to be executed on timeout. #

0x0800042E

142
143
144

145
145
o

g b

pVision with a ULINKpro uses ETM to
provide Code Coverage, Execution
Profiling and Performance Analysis.

/* to

for (::)

/* The id

[] Abstract.bet r Blinky.c.” RT

{

E: include optig

N ——

B
Type [Ovi[tum [Addess [Data | PC [Oy] Cydes | Twely =l
PC Sample 0800042EH 182132258635 1517.76882196 —I |~
FC Sample 0800042EH 182132275019
PC Sample 0800042EH 182132231403 —
FC Sample 08D0042EH 182132307787
FC Sample 08D0042EH b
PC Sample *
= | PC Sample 08D0042EH 39 =
15 2 | PC Sample 08D0042EH 182132373323 a
PC Sample 0800042EH 182132389707
FC Sample 08000AAZH 182132406091
Data Wiite 2000002CH 00000001H 182132413840
FC Sample UB000AAAH 182132422475
FC Sample 08D0042EH 182132438859
FC Sample 08DO042EH 182132455243
FC Sample 08D0042EH 182132471627
PC Sample 0800042EH 182132488011
PC Sample 0800042EH 182132504395
FC Sample 0800042EH 182132520779
PC Sample 0800042EH 182132537163
FC Sample 08D00042EH 182132653547 >
the timer vwas J

definsd vhen created. =/

E: include optional user code to be executed on timeout. */

tion Wizard /]

STMicroelectronics Cortex-M3 Lab with STM3240G-EVAL board

22

Copyright © 2011 ARM Ltd. All rights reserved

www.keil.com

http://www.keil.com/�

13) ITM (Instruction Trace Macrocell) a printf Feature:

Recall that we showed you can display information about the RTOS in real-time using the RTX Viewer. This is done
through ITM Stimulus Port 31. ITM Port 0 is available for a printf type of instrumentation that requires minimal user code.
After the write to the ITM port, zero CPU cycles are required to get the data out of the processor and into pVision for display
in the Debug (printf) Viewer window.

1. Open the project Blinky.uvproj (not RTX Blinky).

2. Add this #define to Blinky.c. A good place is near line 34, just after the declaration of char text[40];.
#define 1TM_Port8(n) (*((volatile unsigned char *)(0xE0000000+4*n)))

3. Inthe function LED_Out in Blinky.c, enter these lines starting at

near Ilne 128 Blinky.c GLCD_16bitIF_STM32F2%¢.¢ r startup_stm32f4xcs. r ADC.c R
120 /+
while (ITM_POrtS(O) == 0) : :2 ’ir:jxcriﬂz that 'fn.i':p;;:rs value to LEDs
ITM_Port8(0) = i + 0x30; /* displays i value: */ L T - (mnsignaq 1nt vawe)
125
while (ITM_Port8(0) == 0); R
ITM_Port8(0) = 0x0D; ES :?:{i:mrcg%fui‘gtf)o::o?): /* displays i valus: */
- 130 while (ITM Port8(0) == 0):
while (ITM_Port8(0) == 0); :g; I‘Tj!‘_{IFDIt;;‘(F; - 23;21):;:: s
|TM_P0rt8(0) = OXOA; :gj ITM Porte(0) = Ox0A:
. . 135 if (value & (1<<i)) {
4. Rebuild the source files, program the Flash memory and enter m mon G
debug mode. Select File/Save All. i il

5. Open Debug/Debug Settings and select the Trace tab.

6. Unselect On Data R/W Sample, Periodic and ITM Port 31. (this is to help not overload the SWO port)

7. Select EXCTRC and ITM Port 0. ITM Stimulus Port “0” enables the Debug (prinftf) Viewer. e 5
8. Click OK twice. q
9. Click on View/Serial Windows and select Debug (printf) Viewer and click on RUN.
10. In the Debug (printf) Viewer you will see the ASCII value of i appear.

==

I;owmn-owm

Trace Records

of
1. Open the Trace Records if not already open. Double click on it to clear it.
2. You will see a window such as the one below with ITM and Exception frames. You may have to scroll to see them.
What Is This ?

1. ITM 0 frames (Num column) are our ASCII characters from num with carriage return (OD) and line feed (0A) as
displayed the Data column.

All these are timestamped in both CPU cycles and time in seconds.
Note the “X” in the DIy column. This means the timestamps might/are not be correct due to SWO pin overload.

ITM Conclusion x

The writes to ITM Stimulus Port 0 are intrusive and | Tiee Ovi[Mom[Aodtess [Doa [PC [oy[Goeo | Tmely |-l
Exception Entry M 11639036356 69.57759736
are usually one cycle. It takes no CPU cycles to get | Exwzpion st e 11688036400 6957759762
. . Exception Retum o X 11635040457 69.57762177
the data out the STM32 processor via the Serial Exception Entry 15 TI6E9104561 6957800334
. . ITM 0 30H 11685104677 £9.57800403
Wire Output pin. I] O0DH 11689104652 69 57800412
ITM 0 0AH 11685104703 69.57800418

This is much faster than using a UART and none of iy 2 AW Xy e =
your peripherals are used. e 0 a4 X eioay s
.. . . IT™ o 0DH X 11685143417 69.57823462
TIP: It is important to select as few options in the ITH 0 0AH X 16891417 6957823462
. . . . ITM 0 13H X 11685143417 69.57823462
Trace configuration as possible to avoid ITH 0 0DH X 11691417 6957823462
. - IT™] 0AH X 11685143417 69.57823462
overloading the SWO pin. Enter only those features |ecepionrenm x 0 X 16814417 6957323662
Exception Entry M 11689157436 69.57855617

that you really need. Ea 2
|:|

Super TIP: ITM_SendChar is a useful function you can use to send characters. It is found in the header core.CM3.h.

23 Copyright © 2011 ARM Ltd. All rights reserved
STMicroelectronics Cortex-M3 Lab with STM3240G-EVAL board www.keil.com

http://www.keil.com/�

Part C)

Using the ULINKpro with ETM Trace:
The examples previously shown with the ULINK2 will also work with the ULINKpro. There are two major differences:
1) The window containing the trace frames is now called Trace Data. More complete filtering is available.

2) The SWV (Serial Wire Viewer) data is sent out the SWO pin to the ULINK2 using UART encoding. The
ULINKQpro can send SWV data either out the SWO pin using Manchester encoding or out the 4 bit Trace Port. This
is done so the ULINKpro can still support those Cortex-M3 processors that have SWV but not ETM. The trace port
is found on the 20 pin Hi-density connector. It is configured in the Trace configuration window as shown below.
ETM data is always sent out the Trace Port and if ETM is being used, SWV frames must also sent out this port.

ULINKQpro offers: ~Trace Port
1) Faster Flash programming than the ULINK2. Sync Trace Fort with 4bit Data 7|
i . i Sync Trace Port with 1-bit Data
2) All Serial Wire Viewer features as the ULINK2 does. Sync Trace Port with 2bit Data
- - Sync Trace Port with 4-bit Data
3) Adds ETM trace which provides records of all Program Counter values. ULINK2 Soral Vi Output - anchr
provides only PC Samples and is not nearly as useful. Seral Wire Output - UART/NRZ

4) Code Coverage: were all the assembly isntructions executed ? Untested code can be dangerous.
5) Performance Analysis: where did the processor spent its time ?

6) Execution Profiling: How long instructions, ranges of instructions, functions or C source code took in both time
and CPU cycles as well as number of times these were executed.

1) Target Selector Box:

Beside the Target Options icon AN s the Target Selector drop down menu as shown here. The [Ram -]
entries shown select between different settings in the Target Options menus and source files SWO Trace

associations. You can select an entry and then look in the Target Options menus to see what is T et tion Trace
selected. This is a handy method to rapidly select different configurations. BAM

To create your own Target Options, select Project/Manage and select Components,.... You can name them anything.

1. SWO Trace: SWV frames are sent out the SWO pin just as with the ULKINK2. ETM trace is not enabled.
Manchester format is used (ULINKpro does not use UART mode). ULINKpro does not use the Core Clock: setting
in the Trace tab to determine what frequency to sample the SWO pin. It does use this value to determine various
trace timings. The file STM32F4xx_SWO.ini is selected in the Initialization File: box.

2. TracePort Trace: SWV frames are sent out the 4 bit Trace Port. ETM is not enabled. The file
STM32F4xx_TP.ini is selected in the Initialization File: box.

3. TracePort Instruction Trace: Both SWV and ETM are enabled and sent out the 4 bit Trace Port. The file
STM32F4xx_TP.ini is selected in the Initialization File: box.

Note: The STM3240G-EVAL board does not reliably output frames out the Trace Port with CPU speeds above
approximately 60 MHz. The Keil MCBSTM32F400 does not have this limitation. The suspect is improper trace
layout on the PCB and probably with the TrcClIk signal and not the STM32 processor.

Please see 8) Modifying processor speed for SWO and ETM with STM3240G-EVAL: on page 32.

4. RAM: Loads the program into RAM instead of Flash when entering Debug mode. You do not select the Load icon.
The memory settings are in the Target tab in the Target Options menu. The file Dbg_RAM.ini is selected in the
Initialization File: box.

When you switch from RAM to Flash and vice versa, you must rebuild and re-flash the project. This is because the
addresses where the executable is located is very different.

24 Copyright © 2011 ARM Ltd. All rights reserved
STMicroelectronics Cortex-M3 Lab with STM3240G-EVAL board www.keil.com

http://www.keil.com/�

2) Blinky_ ULp Example:
The project in C:\KeilNARM\Boards\ST\STM3240G-EVAL\Blinky_Ulp is preconfigured for the ULINKpro.

1.

10.

11.

12.
13.

Connect the ULINKpro to the STM3240G board using the 20 pin CN13 Trace connector.

Start pVision by clicking on its desktop icon. ﬂ
Select Project/Open Project. Open C:\KeilNARM\Boards\ST\STM3240G-EVAL\ Blinky_Ulp\Blinky.uvproj.

TracePort Instruction Trar =

Select TracePort Instruction Trace in the Target Options box as shown here:

Compile the source files by clicking on the Rebuild icon. . You can also use the Build icon beside it.

LoAD
Program the STM32 flash by clicking on the Load icon: #* Progress will be indicated in the Output Window.
Enter Debug mode by clicking on the Debug icon. @ Select OK if the Evaluation Mode box appears.
DO NOT CLICK ON RUN YET !!I
Open the Data Trace window by clicking on the small arrow beside the Trace Windows icon. ===>

V| Trace Data

Exceptions

Counters

Examine the Instruction Trace window as shown below: This is a complete record of all the program flow since
RESET until uVision halted the program at the start of main() since Run To main is selected in pVision.

|Trace Data 1 x |
[Display: All = g * in Al = = -
Time Address / Port Instruction / Data Src Code / Trigger Addr
X1 0xDB0014E4 CMP r2,£#0x00 d
0.000122 800 s | X : Ox0B0014E6 * BNE 0x080014ED
0.000122 833 s | X : 0xDB0014E3 BX Ir
¥ : 0x0B001432 ADDS rd,rd #0x10
X1 0xDB001434 CMP 4,15
0.000122933 s | X : 0x0B001436 *BICC 0x08001426
X : 0x08001438 BLW 0x08000190
¥ : 0x0B000190 LDR 0, [pc,#0] ; @0xdE000194
0.000123 200 s | X : 0x0B8000192 BX] j
-
@ Disassembly | ﬂ Logic Analyzer | j Trace Data

In this case, 123 200 s shows the last instruction to be executed. (BX r0). In the Register window the PC will

. s
display the value of the next instruction to be executed (0x0800_0192 in my case). Click on Single Step once. N
The instruction PUSH will display: | 0x080011DA | PUSH (r3,Ir) | int main(void) { /* Main Program */ |

Scroll to the top of the Instruction Trace window to frame # 1. This is nearly the first instruction executed after
RESET.

Note: The STM3240G-EVAL does not reliably output frames out the Trace Port with CPU speeds above approximately 60
MHz. The Keil MCBSTM32F400 does not have this limitation. The suspect is improper trace layout on the PCB and
probably with the TrcClIk signal and not the STM32 processor.

Changing CPU Speed:

Please see 8) Modifying processor speed for SWO and ETM with STM3240G-EVAL.: on page 32.
The Blinky project in Blinky_Ulp is configured to run at 60 MHz.

25 Copyright © 2011 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with STM3240G-EVAL board www.keil.com

http://www.keil.com/�

3) Code Coverage:

14. Click on the RUN icon. After a second or so stop the program with the STOP icon. Q
15. Examine the Disassembly and Blinky.c windows. Scroll and notice different color blocks in the left margin:
16. This is Code Coverage provided by ETM trace. This indicates if an instruction has been executed or not.

Colour blocks indicate which assembly instructions have been

executed.

. 1.

2.
3.
5.
B s
& T

In the window on the right you can easily see examples of each type of

Green: this assembly instruction was executed.
Gray: this assembly instruction was not

executed.

Orange: a Branch is always not taken.

Cyan: a Branch is always taken.

Light Gray: there is no assembly instruction at

this point.

RED: Breakpoint is set here.
Next instruction to be executed.

Disassembly

1141:

114z:

1014:

1015:
101&:

0x08001042 F1BOTFS0
0x08001046 D300
0x08001048 EOQI1C B
SysTick->LOAD
0x08001044 FO20417F
0x0800104E 1EA493
0x08001050 FO4F22EQ MOV
0x08001054 6151
NVIC SetPriority (SysTick IR{m, (1.
0x08001056 BFOO
if (IRQm < 0)
0x08001058 1751
0x0800105& 2900
0x0800105C DAROS

CHE
BCC

EIC
5UBS
STR
HCFE
ASRS
CHE

BGE

SCE->3HP[((ui

elze {
0x02800105E 210F
0x08001060 0108

MOVS
L5L5

ro, ¥0x1000000
0x08001042
0x08001084

= (ticks & SysTick]
rl, r0, #0xFF000!
rl,rl, #1
r2, ¥0xEQQOEQQQ
rl, [r2,#0x14)

rl,x2, %29

rl, #0=x00

0x0800106R
nt32_t) (IRgn) & OxF

rl, #0x0F
rl,rl, #4

4
@Disassembly ﬂL-Jgic Analyzer | ﬂ[nstrudian Trace |

Code Coverage block and if they were executed or not and if branches were taken (or not).

Why was the branch BCC always taken resulting in 0x0800_1048 never being executed ? Or why the branch BGE at
0x800_105C was never taken ? You should devise tests to execute these instructions so you can test them.

Code Coverage tells what assembly instructions were executed. It is important to ensure all assembly code produced by the
compiler is executed and tested. You do not want a bug or an unplanned circumstance to cause a sequence of untested
instructions to be executed. The result could be catastrophic as unexecuted instructions cannot be tested. Some agencies
such as the US FDA require Code Coverage for certification.

Good programming practice requires that these unexecuted instructions be identified and tested.

Code Coverage is captured by the ETM. Code Coverage is also available in the Keil Simulator.

A Code Coverage window is available as shown below. This window is available in View/Analysis/Code Coverage. Note
your display may look different due to different compiler options.

Code Coverage

Update || Clear Madule: I:AII Modules: j
Modules/Functions | Execution percentage I;|
- Blinky
"""" ADC_init 100% of 65 instructions, 2 condjump(s) not fully executed
"""" LED _init 1007 of 95 instructions
"""" LED On 100% of 19 instructions
"""" LED_Off 100% of 19instructions
"""" LED_QOut 100% of 17 instructions
------ main 94% of 109 instructions, 2 condjump(s) not fully executed
E-IRQ
----- SysTick_Handler 100% of 48 instructions, 1 condjumpis) nat fully executed
"""" CalcAverage 100% of 25 instructions
"""" ADC_IRGHandler 100% of 17 instructions, 1 condjumpis) not fully executed
= Serial
"""" SER_init 1007 of 47 instructions
"""" sendchar £8% of 22 instructions, 3 condjiump(s) not fully executed
....... getkey 0% of & instructions
= Retanget
------- foute 100°% of &instructions
------- fgetc . of 4 instructions
"""" Femar 0% of 3 instructions
....... _ttywrch 0% of 5instructions
------- _ays_exit 0% of 2 instructions i
[@h Disassembly | B8 Logic Analyzer M Bl mstruction Trace
26 Copyright © 2011 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with STM3240G-EVAL board

www.keil.com

http://www.keil.com/�

4) Performance Analysis (PA):

Performance Analysis tells you how much time was spent in each function. The data can be provided by either the SWV PC
Samples or the ETM. If provided by the SWV, the results will be statistical and more accuracy is improved with longer runs.
Small loops could be entirely missed. ETM provides complete Performance Analysis. Keil provides only ETM PA.

Keil provides Performance Analysis with the pVision simulator or with ETM and the ULINKpro. SWV PA is not offered.
The number of total calls made as well as the total time spent in each function is displayed. A graphical display is generated
for a quick reference. If you are optimizing for speed, work first on those functions taking the longest time to execute.

Use the same setup as used with Code Coverage.
2. Select View/Analysis Windows/Performance Analysis. A window similar to the one below will open up.

3. Exit Debug mode and immediately re-enter it. @ This clears the PA window and resets the STM32 and reruns it to
main() as before. Or select the Reset icon in the PA window to clear it. Run the program for a short time.

Expand some of the module names as shown below.

5. Note the execution information that has been collected in this initial short run. Both times and number of calls is
displayed.

6. We can tell that most of the time at this point in the program has been spent in the GLCD routines.

Resst ‘ Show: IModuIes ﬂ

Module./Function Calls Time({Sec) Time({3) | &

= Binky 17673 007 — |

B GLCD_16bitIF_STM32F Zec.c 1.1658 10 B |

"""" delay 5 699.090 ms 60 R |
"""" rd_reg 1 0.600us 0% |
"""" GLCD_lnit 1 13.767 us 0% |
"""" GLCD_SetWindow 455 321.200us 0% |
"""" GLCD_WindowMax 5 2067 us 0% |
"""" GLCD_PutPixel] Qus 0% |
"""" GLCD_Set TextColor 748 £0.383us 0% |
"""" GLCD_SetBackColor 2 0.367 us 0% |
"""" GLCD_Clear 1 8.000 ms 1% |
"""" GLCD_DrawChar_U& o Ous 0% | b
"""" GLCD_DrawChar_LI16& 77 10.004 ms 1% |
"""" GLCD_DisplayChar 77 58.000 us 0% |
"""" GLCD_DisplayString 4 16.067us 0% |
"""" GLCD_Clearln] Qus 0% |
"""" GLCD_Bargraph 73 250.735 ms 2%
"""" GLCD_Bitmap i} us 0% |
"""" GLCD_Bmp] Ous 0% |
"""" GLCD_ScrollVertical] Qus 0|
"""" wr_cmd 3233 510.700us 0|
"""" wr_dat 273 220367 us 0% |
"""" wr_dat_only 1417418 154.013 ms 17 I
"""" Wr_reg 273 1.545ms | -

@Disassemhly | E Performance Analyzer S Logic Analyzer |c\°;: Code Coverage | ﬂTrace Data |

Click on the RUN icon.

Note the display changes in real-time while the program Blinky is running. There is no need to stop the processor to
collect the information. No code stubs are needed in your source files.

9. Select Functions from the pull down box as shown here and notice the difference.
10. Exit and re-enter Debug mode again and click on RUN. Note the different data set displayed.
11. When you are done, exit Debug mode.

TIP: You can also click on the RESET icon - & | but the processor will stay at the initial PC and will not run to main(). You
can type g, main in the Command window to accomplish this.

When you click on the RESET icon, the Initialization File .ini will no longer be in effect and this can cause SWV and/or
ETM to stop working. Exiting and re-entering Debug mode executes the .ini script again.

27 Copyright © 2011 ARM Ltd. All rights reserved
STMicroelectronics Cortex-M3 Lab with STM3240G-EVAL board www.keil.com

http://www.keil.com/�

5) Execution Profiling:

Execution Profiling is used to display how much time a C source line took to execute and how many times it was called.
This information is provided by the ETM trace. It is possible to group source lines (called collapse) to get combined times
and number of calls. This is called Outlining. The pVision simulator also provides Execution Profiling.

1. Enter Debug mode. Execution Profiling 3 Disabled
2. Select Debug/Execution Profiling/Show Time. SR 7| Show Time
3. Inthe left margin of the disassembly and C source R Show Calls
windows will display various time values. o
i Function Editor (Open Ini File... Reset Information
4. Click on RUN.
5. The times will start to fill up as shown below right:
6. Click inside the yellow margin of Blinky.c to refresh it. Abstractin, (2] Binky< | [core_amsn |
7. This is done in real-time and without stealing CPU cycles. 20 00S0ps GLCD SerTexcColor (Blue);
208 #endif // __USE LCD
H H H 209
8. Hover the cursor over a time and ands more information appears as 58 0 while (1) <
In the yellow box here: frine E T B S e il gt SIS
19.599 5 139910257 0.140 ps 213 0033 ps AD walue = AD last;
214
9. Recall you can also select Show Calls and this information rather 215 l4i4s | if (AD valne != AD princ} {
. 216 #ifdef USE LCD
than the execution times will be displayed in the margin. 27 767 GLCD_SetTextColor (Red) ;
218 10817 ps GLCD Bargraph (9 * _ FONT W
219 E117 ps GLCD_SetTextColor (White);
220 #endif // __USE_LCD
. ; 221
OUtIInIng' 222 3175 ps AD print = AD value;
. .. . B.350 = value;
1) Block a section of source as similar to this: o e
225
Abstract. bt *1 Bl m3.h 226 /* Printf message with AD wval
o / e r core e I 227 22975 if (clock 1s) {
207 0.050 ps GLCD_SetTextColor (Blue); 298 0,500 ps clock 1= = 0;
208 $endif // __USE LCD 229 0.667 ps sprinEf(t,ext,, "AD walue = C
209 230
Time: Calls: A]
LT 2 ke o e e
212 2'15?: 233 0.875 ps GLCD DisplayString(S, 0,
i} 234 #endif // USE T
213 0.033 ps)) C Pes 0.483 s , text):
214 275

2) Right click on the blue block and select Outlining and then Collapse
Section as shown below:

Qutlining 3 Collapse Selection

Advanced 4
- Collapse All Definitions

Collapse Current Block

Collapse Current Procedure

Stop Current Qutlining
Stop All Qutlining
Start All Qutlining

3) Note the section you blocked is now collapsed and the times are added together where the red arrow points.
4) Click on the + to expand it.
5) Stop the program and exit Debug mode.

Abstract.brt/ Blinky.c r core_cm3.h I

207 0.050 ps GLCD_ SetTextColor (Blue
208 #endif // __USE_LCD
209
210 0.033 ps while (1) {
211 3.636 =[] . S e
214

28 Copyright © 2011 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with STM3240G-EVAL board www.keil.com

http://www.keil.com/�

6) In-the-Weeds Example:

Some of the hardest problems to solve are those when a crash has occurred and you have no clue what caused this. You only
know that it happened and the stack is corrupted or provides no useful clues. Modern programs tend to be asynchronous with
interrupts and RTOS task switching plus unexpected and spurious events. Having a recording of the program flow is useful
especially when a problem occurs and the consequences are not immediately visible. Another problem is detecting race
conditions and determining how to fix them. ETM trace handles these problems and others easily and is not hard to use.

If a Hard Fault occurs, the CPU will end up at the address specified in the Hard Fault vector located at 0x00 000C. This
address points to the Hard Fault handler. This is usually a branch to itself and this Branch instruction will run forever. The
trace buffer will save millions of the same branch instructions. This is not useful. We need to stop the CPU at this point.

This exception vector is found in the file startup_stm32f4xx.s. If we set a breakpoint by double-clicking on the Hard Fault
handler and run the program: at the next Hard Fault event the CPU will jump to the Hard Fault handler (in this case located at
0x0800 01B0 as shown to the right) and stop.

193: B . -~

The CPU and also the trace collection will stop. The trace 131 _ mwe
buffer will be visible and extremely useful to investigate and Loo) EmemmeR sEnaien
H 197: EXPCRT MemManage Handler [WERK]
determlne the Cause Of the CraSh aOXOEOOOIEO ET7FE B ErrH;r;;:Elz_Haidler EOXOEOO‘OIEO}
198: B

1. Open the Blinky_Ulp example, rebuild, program the 198: moe
Flash and enter Debug mode. Open the Data Trace A00i.BHsESRle endsn lel

4
WlndOW @D\sassembly ﬂL-:uglc Analyzer |

Locate the Hard fault vector near line 207 in the disassembly window or in startup_stm32f4xx.s.
Set a breakpoint at this point. A red block will appear as shown above.

Run the Blinky example for a few seconds and click on STOP.

¥

to go back to the main() program as shown in the Call Stack + Locals window:
‘Call Stack + Locals x

Click on the Step_Out icon
In the Disassembly window, scroll down until you find a

~ A Name Location/Value Type
POP instruction. | found one at 0x0800 1256 as shown o @ man 0X0B000E30 i:tpm
beIOW in the th"'d WindOW: W AD_value 0x0390 auto - unsigned short
)))) b AD_print 020380 auto - unsigned short
7. Right click on the POP instruction (or at the MOV at

0x0800 124E as shown below) and select Set Program {£Cal Stack + Loals | Watcn 1 | Ditemery 1
Counter. This will be the next instruction executed.

Click on RUN and immediately the program will stop on the Hard Fault exception branch instruction.

Examine the Data Trace window and you find this POP plus everything else that was previously executed. In the
bottom screen are the 4 MOV instructions plus the offending POP.

10. Note the Branch at the Hard Fault does not show in the trace window because a hardware breakpoint does execute

the instruction it is set to therefore it is not recorded in the trace buffer. 0%08001248 F1A40401 SUB x4, r4, #0501
0x0800124C DCDF BGT 0x0800120FE
I:>0x0300124E 4648 MoV r0,r9
0x08001250 4631 MoV rl, 6
0x08001252 462R MoV r2,rs5
0x08001254 4643 MoV r3,r8
0x08001256 ESBDSFFQ POP {r4-rl2,pc}
0x0800125A 0000 MCOVS ro,r0
__scatterload:
Trace Data x
 Display: Al - @ - in Al = -
Time Address / Port Instruction / Data Src Code / Trigger Addr
X 003000004 LDRE 1, [rD,#0:00] ;I
X 03000006 CBZ r1,0x05000DED
1.215414 190 5| X : 0x08000DED MOV i, #0xFFFFFFFF return -1; /* Conv. in pro...
1,215 414 210 s | ¥ : 0x03000DE4 BEX Ir
X1 0x0800124E MOV ,ra
X 003001250 MOV i,
¥ 0x08001252 MOV r2,r5
¥ 003001254 MOV 3,18
1.215 420 300 s | X : 008001256 POP {r4-ri2,pct 71

The frames above the POP are a record of all previous instructions executed and tells you the complete program flow.

29 Copyright © 2011 ARM Ltd. All rights reserved
STMicroelectronics Cortex-M3 Lab with STM3240G-EVAL board www.keil.com

http://www.keil.com/�

7) Configuring the ULINKpro ETM Trace:

The ULINKpro was configured for SWV operation using the SWO pin and Manchester encoding on page 11. The project
Blinky_Ulp is pre-configured for ETM trace. We will activate ETM trace here manually to illustrate how it is done.

1) Select the STM3240G-EVAL Blinky project.

2) Configure ULINKpro for the STM32 processor as described on page 6: ULINKpro and pVision Configuration:
Do not forget to configure the Flash programmer as well.

3) MVision must be stopped and in edit mode (not debug mode).
4) Select Options for Target &N or ALT-F7 and select the Debug tab.

Edit...
5) Inthe box Initialization File: insert STM32F4xx_TP.ini. Click on the Edit box. —nl The specified ini file will
open.

6) Click OK. At the bottom of the ini file, click on the Configuration Wizard tab.

7) Expand the menu and select Synchronous: Trace ,
Data Size 4 as shown here: 03 stmsz.trani | [] bstractte | (2] sinkye | [smsz_swouini |

¥F X
TIP: Asynchronous is used to select the SWO port and is Bpand Al | Colapss Al | Help
needed for the ULINK2 or ULINK-ME. ooton [vae
8) Click on File/Save All to enable this file. It will [5-Debug MCU Configuration
. DBG_SLEEP [¥
be executed when you enter Debug mode. . DBG.STOP v
g - DBG_STANDBY Ird
9) Select Options for Target &N or ALT-F7 and - TRACE_IOEN ~
select the Debug tab (again). e tibe aro Smevonoss TUEAT 5_'264 =
10) Click on Settings: beside the name of your - oee.s.STop S ncvoreus: TRACEDATA S 2
adapter (ULINK Pro Cortex Debugger) on the - DBG.TIM2 STOP
right side of the window. .DBG_TIM3_5TOP r
. i i -.DBG_TIM4_STOP -
11) Click on the Trace tab. The window below is ..DBG_CAN_STOP r
displayed.
'\ Text Editor j} Configuration Wizard

12) Core Clock: Enter 168 MHz. ULINKpro uses this
value only to calculate various timing values.

13) In Trace Port select Sync Trace Port with 4 bit data. It is possible to use other bit sizes but best to use the largest.
14) Select Trace Enable and ETM Trace Enable. Unselect Periodic and leave everything else at default as shown below.
15) Click on OK twice to return to the main puVision menu. Both ETM and SWV are now configured.

16) Select File/Save All. 5 —
|
The ETM is now configured. Debug Trace | Flsh Dowrioad |

Note: The STM3240G-EVAL board has

chaIIenges sending data to the Trace Port Core Clock:l 168.000000 MHz ¥ Trace Enable [UnlimitedTrace ¥ ETM Trace Enable

connector. At 168 MHz, trace collection is [lese T Tese SiE

Unreliable SIOW the CPU dOWﬂ to 60 MHZ IS‘,'nc: Trace Port with 4-bit Data j V¥ Enable Prescaler: I‘I 'l [~ CPI: Cycles per Instruction

e . ! [EXC: Exception overhead

See the instructions on page 32. CLK: [0.0ns = DO:J0.0ns = | —PC Samping————————— e
D‘I:ID_Dns 'l Prescaler: |1D24'1E 'l [~ LSU: Load Stare Unit Cycles
D2: m ™ Periodic Period: Im [~ FOLD: Folded Instructions

TIP: We said that you must use SWD (also D3:J00ns =] | | I on Data RAW Sample ¥ EXCTRC: Bxception Tracing

called SW) in order to use the Serial Wire T Stimis Ports

Viewer. With the ULINKpro and with the 31 Pot 2423 Pot 1615 Pot 8 7 Pot 0

Trace Port selected, you can also select the | GG oo 9ue 956660 906G 0 900 uene

ITAG ¢ I ! yth SWD e Pﬁ\rilege:l[b(DDDDDDDE Pot 31.24 Port 23.16 [~ Port 15.8 [~ Port 7.0 ™

port as well as the port since no
conflict between SWO and TDIO signals will
no longer occur. ok | Cancel | Help
30 Copyright © 2011 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with STM3240G-EVAL board www.keil.com

http://www.keil.com/�

8) Serial Wire Viewer Summary:

Serial Wire Viewer can see:

Global variables.

Static variables.

Structures.

Peripheral registers — just read or write to them.

Can’t see local variables. (just make them global or static).

Can’t see DMA transfers — DMA bypasses CPU and SWV by definition.

Serial Wire Viewer displays in various ways:

PC Samples.

Data reads and writes.
Exception and interrupt events.
CPU counters.

Timestamps for these.

Trace is good for:

Trace adds significant power to debugging efforts. Tells where the program has been.
A recorded history of the program execution in the order it happened.

Trace can often find nasty problems very quickly.

Weeks or months can be replaced by minutes.

Especially where the bug occurs a long time before consequences are seen.

Or where the state of the system disappears with a change in scope(s).

Plus - don’t have to stop the program. Crucial to some.

These are the types of problems that can be found with a quality trace:

Pointer problems.
Illegal instructions and data aborts (such as misaligned writes).

Code overwrites — writes to Flash, unexpected writes to peripheral registers (SFRs), corrupted stack.
How did I get here ?

Out of bounds data. Uninitialized variables and arrays.
Stack overflows. What causes the stack to grow bigger than it should ?

Runaway programs: your program has gone off into the weeds and you need to know what instruction caused this.
Is very tough to find these problems without a trace especially oif the stack is corrupted.

ETM trace with the ULINKQpro is best for solving program flow problems.
Communication protocol and timing issues. System timing problems.

For complete information on CoreSight for the Cortex-M3: Search for DDI0314F _coresight_component_trm.pdf on
WWw.arm.com.

31 Copyright © 2011 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with STM3240G-EVAL board www.keil.com

http://www.keil.com/�

9) Modifying the processor speed for SWO and ETM with STM3240G-EVAL:

The STM3240G-EVAL has an issue with high speed SWV and ETM trace when using the ULINKpro. The Keil
MCBSTM32F400 does not have this limitation. The ULINK2 and ULINK-ME are not affected as they cause the SWV to be
output the SWO pin at relatively slow data rats.

This might be a board layout issue: it is important that the ETM signal traces, especially the ETM clock, be as short in length
as possible. Recall the ULINKpro can access SWV information out either the one pin SWO port using the Manchester
protocol or the 4 bit Trace Port.

Using the SWO pin using the Manchester protocol:

1) Select Options for Target EN or ALT-F7 and select the Debug tab.
2) Inthe drop-down menu box select the ULINK Pro Cortex Debugger.
3) Select the file STM32F4xx_SWO.ini.

4) Select Settings and the Target Driver window below opens up:

5) Inthe Trace setup window shown x|
here: Select Serial Wire Output — Debug Trace | Fiash Dowrlosd |
Manchester.
6) Uncheck Autodetect. Core Clock:l 168.000000 MHz |V Trace Enable [UnlimitedTrace [~ ETH Trace Enable
~Trace Pot————— Timestamps— [~ Trace Events
7) Set SWO CIOCk Prescaler to 2 Serial Wire Output - Manchester j V¥ Enable Prescaler: I‘I 'l ™ CPI: Cycles per Instruction
8) The signal from the SWO pin will be SWO Clock Prescaler:[2 — ; ?L‘E:EE“ST"“"”C::”‘EE"
. . : Sleep es
reduced to 84 MHz. Click OK twice. I Autodetect Prescaler: [1024°16] [~ LSU: Load Store Unit Cycles
9) SWO Wi" now function properlyl A Ckmk:l L0 PIE: ™ Periodic F‘eriod:l <Digabled: [FOLD: Folded Instructions
[™ on Data RAW Sample ¥ EXCTRC: Exception Tracing
—ITM Stimulus Ports
; ; . 31 Pot 2423 Pot 1615 Pot 8 7 Pot O
Usmg 4 bit Trace Port: Enable: |ixFFFFFFFF WivivvivIvvly VivivivIviviviy Fiviviviviviviv WIVIIVIVIVIve
The CPU clock must be slowed to 60 MHz. Priviege: [(x00000008 Pot31.24 ¥ Pot23.16 [Pot 15.8 [~ Pot7.0 I~
In the file system_stm32f4xx.c there are three
variables to change to modify the clock speed.
ok | cancel | Help
PLL M, PLL_Nand PLL_P. Shown are the
values for 60, 120 and 168 MHz. PLL_Q is shown for reference.
60 120 168 MHz "
146 /+ PLL Voo = (HSE VALUE or HSI VALUE / PLL M) * PLL N */
PLL M 25 25 25 147 #define PLL M 25
- 148 #define PLL_N 3386
PLL_N 240 240 336 143
180 /+ SYSCLE = PLL Voo / PLL P =/
PLL—P 4 2 2 151 #define PLL P 2
PLL_Q 5 5 7 152
183 /+ USB OTG FS, SDIO and RNG Clock = FPLL VCO / PLLQ */
154 #define PLL Q 7
155

1) Modify the values in system_stm32f4xx.c for 60 MHz, rebuild to source files and program the Flash.
2) The file STM32F4xx_TP.ini must be entered in the ini box in the Debug tab.
3) Re-enter debug mode and the ETM trace will now work.

ETM with this board works reliably at 60 MHz. With the Keil MCBSTM32F4 it works reliably to 168 MHz. On your own
custom board, place the ETM connector as close to the CPU as practical. Practice appropriate high speed PCB design. The
ETM TraceCLK is the most important and most easily corrupted signal.

32 Copyright © 2011 ARM Ltd. All rights reserved
STMicroelectronics Cortex-M3 Lab with STM3240G-EVAL board www.keil.com

http://www.keil.com/�

10) Keil Products:
Keil Microcontroller Development Kit (MDK-ARM™)

= MDK-Professional (Includes Flash File, TCP/IP, CAN and USB driver libraries) Promotion with ULINKpro until
December 31, 2011 - $9,995 Please contact Keil Sales for more details.

= MDK-Standard (no compile or debug limit) - $4,895

= MDK-Basic (256K Compiler Limit, No debug Limit) - $2,695

= MDK-Lite (Evaluation version) $0
All versions include Keil RTX RTOS with source code !
Call Keil Sales for more details on current pricing. All products are available.
Call Keil Sales for special university pricing.
For the ARM University program: go to www.arm.com and search for university.
All products include Technical Support for 1 year. This can be renewed.

USB-JTAG adapter (for Flash programming too)
= ULINK2 - $395 (ULINK2 and ME - SWV only — no ETM) [P]KEIL
* ULINK-ME — sold only with a board by Keil or OEM. EKE“: Development Tools
= ULINKpro - $1,395 — Cortex-Mx SWV & ETM trace \ -

Gerting 513'-:‘“3

Note: USA prices. Contact sales.intl@keil.com for pricing in other
countries.

Prices are for reference only and are subject to change without notice.

For the entire Keil catalog see www.keil.com or contact Keil or your local
distributor.

For more information:

Keil Sales In USA: sales.us@keil.com or 800-348-8051. Outside the US: sales.intl@keil.com

Keil Technical Support in USA: support.us@keil.com or 800-348-8051. Outside the US: support.inti@keil.com.
For comments or corrections please email bob.boys@arm.com.

For the latest version of this document, contact the author, Keil Technical support or www.keil.com/st

v COMPLIANT C L
Ay Cortex Microcontraller rtex

Intelligent Processors by ARM®

KEIL

Tools by ARM

33 Copyright © 2011 ARM Ltd. All rights reserved
STMicroelectronics Cortex-M3 Lab with STM3240G-EVAL board www.keil.com

http://www.keil.com/�
http://www.arm.com/�
mailto:sales.intl@keil.com�
http://www.keil.com/�
mailto:sales.us@keil.com�
mailto:sales.intl@keil.com�
mailto:support.us@keil.com�
mailto:support.intl@keil.com�
mailto:bob.boys@arm.com�
http://www.keil.com/st�

	Introduction:
	Why Use Keil MDK ?
	Serial Wire Viewer (SWV):
	Embedded Trace Macrocell (ETM):
	STM32 Evaluation Board list, 5 Steps, MDK Install, Useful Definitions 3
	Part A: Connecting and Configuring to the target board:
	1. Connecting ULINK2, ULINK-ME or ULINKpro to the STM3240G board: 4
	2. ULINK2 or ULINK-ME and µVision Configuration: 5
	3. ULINKpro and µVision Configuration: 6
	4. ST-Link from STMicroelectronics and µVision Configuration: 7
	5. Segger J-Link and µVision Configuration: 8
	Part B: Blinky Example Programs using a ULINK2 or ULINK-ME:
	1. Blinky Example Program using the STM32 and ULINK2 or ULINK-ME: 9
	2. Hardware Breakpoints: 9
	3. Call Stack + Locals Window 10
	4. Variables for Watch and Memory Windows: 10
	How to convert Local Variables to view in the Watch or Memory windows: 10
	5. Watch and Memory Windows and how to use them: 11
	6. Configuring the Serial Wire Viewer (SWV): 12
	a. For ULINK2 or ULINK-ME: 12
	b. For ULINKpro: 13
	7. Using the Logic Analyzer (LA) with ULINK2 or ULINK-ME: 14
	a. Another use of the Logic Analyzer: 15
	8. Watchpoints: Conditional Breakpoints 16
	9. RTX_Blinky example program with Keil RTX RTOS: 17
	10. RTX Kernel Awareness using Serial Wire Viewer (SWV): 18
	11. Logic Analyzer Window: Viewing Variables in real-time in a graphical format: 19
	12. Serial Wire Viewer (SWV) and how to use it: (with ULINK2) 20
	a. Data Reads and Writes: 20
	b. Exceptions and Interrupts: 21
	c. PC Samples: 22
	13. ITM (Instruction Trace Macrocell) a printf feature: 23
	Part C: Using the ULINKpro with ETM Trace
	1. Target Selector Box: 24
	2. Blinky_Ulp Example 25
	3. Code Coverage: 26
	4. Performance Analysis: 27
	5. Execution Profiling: 28
	6. In-the-weeds Example: 29
	7. Configuring the ULINKpro ETM Trace: 30
	8. Serial Wire Viewer Summary: 31
	9. Modifying the processor speed: 32
	10. Keil Products and contact information: 33
	STM32 Evaluation Boards:
	Keil makes six STM32 evaluation boards plus several with STR7 and STR9 processors. Examples are provided.
	Keil MDK provides example projects for these STMicroelectronics boards:
	Five Steps to Get Connected and Configured:
	Software Installation:
	JTAG and SWD Definitions: It is useful to have an understanding of these terms:
	Example Programs: See www.keil.com/st for additional information.
	Part A)
	1) Connecting ULINK2, ULINK-ME or ULINKpro:
	2) ULINK2 or ULINK-ME and µVision Configuration:
	3) ULINKpro and µVision Configuration:
	TIP: µVision windows can be floated anywhere. You can restore them by setting Window/Reset Views to default.
	4) ST-Link from STMicroelectronics and µVision Configuration:
	ST-Link Segger J-Link
	5) Segger J-Link and µVision Configuration:
	Configure the SWV Trace
	Part B)
	1) Blinky Example Programs using a ULINK2 or ULINK-ME:
	The LEDs on the STM32 board will now blink at a rate determined by the setting of RV1.
	Now you know how to compile a program, load it into the STM32 processor Flash, run it and stop it.
	2) Hardware Breakpoints:
	3) Call Stack + Locals Window:
	4) Variables for Watch and Memory Windows:
	5) Watch and Memory Windows and how to use them:
	Remember you are not able to view local variables while the program is running. They are visible only when the program is stopped in their respective functions. You must change them to a different type of variable to see them update.
	6) Configuring the Serial Wire Viewer (SWV):
	7) Using the Logic Analyzer (LA) with the ULINK2 or ULINK-ME:
	Another Use for the Logic Analyzer:
	Optional Exercise:
	8) Watchpoints: Conditional Breakpoints
	9) RTX_Blinky Example Program with Keil RTX RTOS: A Stepper Motor example
	The Configuration Wizard for RTX:
	10) RTX Kernel Awareness using Serial Wire Viewer (SWV):
	RTX Viewer: Configuring Serial Wire Viewer (SWV):
	11) Logic Analyzer Window: View variables real-time in a graphical format:
	Enter the Variables into the Logic Analyzer:
	12) Serial Wire Viewer (SWV) and how to use it: (with ULINK2)
	b) Exceptions and Interrupts:
	c) PC Samples:
	13) ITM (Instruction Trace Macrocell) a printf Feature:
	Trace Records
	What Is This ?
	ITM Conclusion
	Part C)
	Using the ULINKpro with ETM Trace:
	1) Target Selector Box:
	2) Blinky_ULp Example:
	3) Code Coverage:
	4) Performance Analysis (PA):
	5) Execution Profiling:
	Outlining:
	6) In-the-Weeds Example:
	7) Configuring the ULINKpro ETM Trace:
	8) Serial Wire Viewer Summary:
	Serial Wire Viewer can see:
	Serial Wire Viewer displays in various ways:
	Trace is good for:
	These are the types of problems that can be found with a quality trace:
	9) Modifying the processor speed for SWO and ETM with STM3240G-EVAL:
	10) Keil Products:
	Keil Microcontroller Development Kit (MDK-ARM™)
	All versions include Keil RTX RTOS with source code !
	Call Keil Sales for more details on current pricing. All products are available.
	Call Keil Sales for special university pricing.
	For the ARM University program: go to Uwww.arm.comU and search for university.
	All products include Technical Support for 1 year. This can be renewed.
	USB-JTAG adapter (for Flash programming too)
	 ULINK2 - $395 (ULINK2 and ME - SWV only – no ETM)
	 ULINK-ME – sold only with a board by Keil or OEM.
	 ULINKpro - $1,395 – Cortex-Mx SWV & ETM trace
	For more information:

