ﬁ' UM1686

User manual

BlueNRG development kits

May 2016

Introduction

This document describes the BlueNRG development kits and related hardware and
software components. The BlueNRG is a very low power Bluetooth® low energy (BLE)
single-mode network processor, compliant with Bluetooth specifications core 4.0. The
BlueNRG can act as master or slave.

There are two types of BlueNRG kits:

1. BlueNRG development platform (order code: STEVAL-IDB002V1)

2. BlueNRG USB dongle (order code: STEVAL-IDB0O03V1)

DoclD025464 Rev 6 1/49

www.st.com

http://www.st.com

Contents UM1686

Contents
1 Getting started e 5
1.1 STEVAL-IDBOO2V1 kitcontents0, 5
1.2 STEVAL-IDBOO3VLKit e e 5
1.3 System reqUIrEMENtS 6
1.4 BlueNRG development kitsetup 6
2 Hardware description i 7
2.1 STEVAL-IDB002V1 motherboard, 7
211 Microcontroller and connections 8
212 POWer . 10
2.13 SN OIS oot 11
214 EXteNsion CONNECIOrt 11
2.15 Push-buttons and joystick 11
2.1.6 JTAG CONNECIONo e e e 11
2.1.7 LEDS . e e 11
2.1.8 Daughterboard interface 11
2.2 BlueNRG daughterboard 12
221 Current measurementsttt 13
2.2.2 Hardware Setupot 13
2.2.3 STM32L preprogrammed application 14
2.3 STEVAL-IDBO0O3V1USBdongle ccouun. 14
231 Microcontroller and connectionsc. .., 14
2.3.2 SWDIinterface 16
233 RFE connector 17
234 Push-buttons 18
2.35 User LEDS 18
2.3.6 Hardware Setup e 18
2.3.7 STM32L preprogrammed application 18
3 Programming with BlueNRG network processor 19
3.1 ReqUIrEMENtS 19
3.2 Software directory structure e e 19
4 BlueNRG sensor profiledemo 21

2149 DoclD025464 Rev 6 ‘Yl

UM1686 Contents
4.1 Supported platforms 22

4.2 BlueNRG app for smartphones 22

4.3 BlueNRG sensor profile demo: connection with a central device 23

43.1 Initialization 23

4.3.2 Add service and characteristics 23

4.3.3 Set security requirements 24

434 Enter connectablemode 24

4.3.5 Connection with central device 24

4.4 BlueNRG sensor demo: central profilerole 25

441 Initialization e 25

4.4.2 Discovery a sensor peripheraldevice 26

4.4.3 Connect to discovered sensor peripheral device 26

4.4.4 Discovery sensor peripheral services and characteristics 26

4.4.5 Enable sensor peripheral acceleration and free fall notifications 27

4.4.6 Read the sensor peripheral temperature sensor characteristic 27

5 BlueNRG chat demo application 28
5.1 Supported platforms 28

5.2 BlueNRG chat demo application: peripheral & central devices 28

5.2.1 Initialization 29

5.2.2 Add service and characteristics i 29

5.2.3 Set security requirements 29

5.2.4 Enter connectablemode 30

5.25 Connection with central device 30

6 BlueNRG Beacon demonstration application 32
6.1 Supported platforms 32

6.2 BLE Beacon application setup e 32

6.2.1 Initialization 32

6.2.2 Define advertisingdata i 32

6.2.3 Entering non-connectablemode L. 33

7 BLE remote control demo application 34
7.1 Supported platforms 34

7.2 BLE remote control applicationsetup 35

7.2.1 Initialization 35

7.2.2 Define advertisingdata i 35

m DoclD025464 Rev 6 3/49

Contents UM1686

7.2.3 Add service and characteristics 35

7.2.4 Connection with a BLE Central device 36
8 Listof acronyms e 37
9 References 38
10 Available board schematics i 39
11 Revision history 48
4/49 DoclD025464 Rev 6 ‘W

UM1686 Getting started

1 Getting started

This section describes all the software and hardware requirements for installing the
BlueNRG DK SW package (STSW-BLUENRG-DK) and using the related HW, SW
resources.

1.1 STEVAL-IDB002V1 kit contents

This kit is composed of the following items:
¢ 1 development motherboard

¢ 1 BlueNRG daughterboard

. 1 2.4 GHz Bluetooth antenna

e 1USB cable

Figure 1. BlueNRG kit motherboard with the STEVAL-I DB002V1 daughterboard
connected

=4 cu[mTy
[=]c3 2

1.2 STEVAL-IDB0O03V1 kit

This kit is composed of the following items:
e 1USBdongle

3

DoclD025464 Rev 6 5/49

Getting started

UM1686

1.3

1.4

Note:

6/49

Figure 2. STEVAL-IDB003V1 BlueNRG USB dongle

System requirements

The BlueNRG DK SW package (STSW-BLUENRG-DK) has the following minimum
requirements:

PC with Intel® or AMD® processor running one of the following Microsoft® operating
systems:

— Windows XP SP3

— Windows Vista

— Windows 7

At least 128 Mb of RAM

2 USB ports

40 Mb of hard disk space available
Adobe Acrobat Reader 6.0 or later

BlueNRG development kit setup

Extract the content of the BlueNRG_DK_-x.x.x-Setup.zip file into a temporary directory.
Launch the BlueNRG-DK-x.x.x-Setup.exe file and follow the on-screen instructions.

EWARM Compiler 7.40.3 or later version is required for building the BlueNRG_DK_ x.x.x
demonstration applications.

3

DoclD025464 Rev 6

UM1686 Hardware description
2 Hardware description

The following sections describe the components of the kits.
2.1 STEVAL-IDB002V1 motherboard

3

The motherboard included in the development kit allows testing of the functionality of the
BlueNRG processor. The STM32L microcontroller on the board can also be programmed,
so the board can be used to develop applications using the BlueNRG. A connector on the
motherboard (Figure 1) allows access to the JTAG interface for programming and
debugging. The board can be powered through a mini-USB connector that can also be used
for I/O interaction with a USB Host. The board includes sensors, and buttons and a joystick
for user interaction. The RF daughterboard can be easily connected through a dedicated
interface.

This is a list of some of the features that are available on the boards:

e STM32L151RBT6 64-pin microcontroller

. Mini USB connector for power supply and 1/0

. JTAG connector

. RF daughterboard interface

. One RESET button and one USER button

. One LIS3DH accelerometer

. One STLM75 temperature sensor

e One joystick

« b5 LEDs

» OnePWRLED

* One battery holder for 2 AAA batteries

* One row of test points on the interface to the RF daughterboard

DoclD025464 Rev 6 7/49

Hardware description

UM1686

Figure 3. Motherboard for the BlueNRG development k

it

-va][o

= ol

"’")l 17

—-1 “'//'ju'/'.

3 ¥ - T]rR24
B G

[¥¥cie
L}

e
©
S

211 Microcontroller and connections
The board features an STM32L151RB microcontroller, which is an ultra low-power
microcontroller with 128 KB of Flash memory, 16 KB of RAM, 32-bit core ARM cortex-M3, 4
KB of data EEPROM, RTC, LCD, timers, USART, I°C, SPI, ADC, DAC and comparators.
The microcontroller is connected to various components such as buttons, LEDs and
connectors for external circuitry. The following table shows what functionality is available on
each microcontroller pin.
Table 1. MCU pin description versus board function
Board function
n:rirrlle Pin Buttons / Temperature Ext.
LEDs DB connector joystick Acceler. sensor uUsB JTAG conn
VLCD 1
PC13 2 DB_SDN_RST
PC14 3 3
PC15 4 5
OSC_IN 5
oscT_ou 6
NRST 7 RESET 7
PCO 8 LED1
PC1 9 LED2
PC2 10 DB_PIN3
PC3 1 9
VSSA 12
Lys

8/49

DoclD025464 Rev 6

UM1686 Hardware description
Table 1. MCU pin description versus board function (continued)
Board function
Pin Pin
name LEDs DB connector 3uttons / Acceler. Temperature uUsB JTAG Ext
J0yStICk sensor conn
VDDA 13
PAO 14 1
PA1 15 13
PA2 16 15
PA3 17 17
VSS_4 18
VDD_4 19
PA4 20 SPI1_NSS
PA5 21 SPI1_SCK
PA6 22 SPI1_MISO
PA7 23 SPI1_MOSI
PC4 24 | LED4
PC5 25 | LED5
PBO 26 JOY_DOWN
PB1 27 JOY_RIGHT
PB2 28 18
PB10 29 INT1
PB11 30 INT2
VSS_1 31
VDD_1 32
PB12 33 DB_CSN®
PB13 34 DB_scLk®
PB14 35 pB_spoW
PB15 36 DB_spI®
PC6 37 PUSH_BTN
PC7 38 DB_loo®
PC8 39 DB_l01®
PC9 40 DB_l02(M)
PAS 41 JOY_LEFT
A 42 JOY_CENTE
R
PA10 43 JOvY_up
PA11 44 USe_D
M
PA12 45 USB_DP
PA13 46 JTMS 16
‘W DoclD025464 Rev 6 9/49

Hardware description UM1686

Table 1. MCU pin description versus board function (continued)

Board function
Pin Pin
name LEDs DB connector Buttons / Acceler. Temperature UsB JTAG Ext.
joystick sensor conn
VSS_2 47
VDD_2 48
PA14 49 JTCK 14
PA15 50 JTDI 12
PC10 51 DB_103_IRQW
PC11 52 DB_PIN1
PC12 53 DB_PIN2
PD2 54 LED3
PB3 55 JTDO 10
PB4 56 INTRST 8
PB5 57 TSEN_INT
PB6 58 12C1_SCL
PB7 59 12C1_SDA
BOOTO 60
PB8 61 4
PB9 62 6
VSS_3 63
VvDD_3 64

1. These lines are also available on the test point row

2.1.2 Power

The board can be powered either by the mini USB connector CN1 (A in Figure 3) or by 2
AAA batteries. To power the board through USB bus, jumper JP1 must be in position 1-2, as
in Figure 3 (B). To power the board using batteries, 2 AAA batteries must be inserted in the
battery holder at the rear of the board, and jumper JP1 set to position 2-3.

When the board is powered, the green LED DL6 is on (C).

If needed, the board can be powered by an external DC power supply. Connect the positive
output of the power supply to the central pin of JP1 (pin 2) and ground to one of the four test
point connectors on the motherboard (TP1, TP2, TP3 and TP4).

2.1.3 Sensors

Two sensors are available on the motherboard:

— LIS3DH, an ultra-low power high performance three-axis linear accelerometer (D
in Figure 3). The sensor is connected to the STM32L through the SPI interface.
Two lines for interrupts are also connected.

— STLMY5, a high precision digital CMOS temperature sensor, with 12C interface (E
in Figure 3). The pin for the alarm function is connected to one of the STM32L
GPIOs.

10/49 DoclD025464 Rev 6 ‘Yl

UM1686

Hardware description

214

2.1.5

2.1.6

2.1.7

2.1.8

3

Extension connector

There is the possibility to solder a connector on the motherboard to extend its functionality
(F in Figure 3). 16 pins of the microcontroller are connected to this expansion slot (Table 1).

Push-buttons and joystick

For user interaction the board has two buttons. One is to reset the microcontroller, while the
other is available to the application. There is also a digital joystick with 4 possible positions
(left, right, up, down) (G in Figure 3).

JTAG connector

A JTAG connector on the board (H in Figure 3) allows the programming and debugging of
the STM32L microcontroller on board@), using an in-circuit debugger and programmer such
as the ST-LINK/V2.

LEDs

Five LEDs are available (I in Figure 3).
— DL21: green
— DL2: orange
— DL3:red
— DL4: blue
— DL5: yellow

Daughterboard interface

The main feature of the motherboard is the capability to control an external board,
connected to the J4 and J5 connectors (L in Figure 3). Table 1 shows which pins of the
microcontroller are connected to the daughterboard.

Some of the lines are connected also to a row of test points (M).

a. The STM32L is preprogrammed with a DFU firmware that allows the downloading of a firmware image without
the use of a programmer. If an user accidentally erases DFU firmware, he can reprogram it through STLink
using the hex image DFU_Bootloader.hex available on BlueNRG DK SW package, firmware folder.

DoclD025464 Rev 6 11/49

Hardware description UM1686

2.2

12/49

BlueNRG daughterboard

The BlueNRG daughterboard (Figure 4) included in the development kit is a small circuit
board to be connected to the main board. It contains the BlueNRG network processor (in a
QFN32 package), an SMA antenna connector, discrete passive components for RF
matching and balun, and small number of additional components required by the BlueNRG
for proper operation (see the schematic diagram in Figure 12).

Figure 4. BlueNRG daughterboard

The main features of the BlueNRG daughterboard are:

— BlueNRG low power network processor for Bluetooth low energy (BLE), with
embedded host stack

— High frequency 16 MHz crystal

— Low frequency 32 kHz crystal for the lowest power consumption

— Balun, matching network and harmonic filter

— SMA connector
The daughterboard is also equipped with a discrete inductor for the integrated high-
efficiency DC-DC converter, for best-in-class power consumption. It is still possible to

disable the DC-DC converter. In this case the following changes must be performed on the
daughterboard (see Figure 12):

— Remove inductor from solder pads 1 and 2 of D1
— Place a 0 ohm resistor between pads 1 and 3
— Move resistor on R2 to R1
For proper operation, jumpers must be set as indicated in Figure 4.

The following tables show the connections between the daughterboard and the main board.

3

DoclD025464 Rev 6

UM1686 Hardware description
Table 2. Connections between BlueNRG board and moth erboard on left connector
Pin J4 motherboard J3 daughterboard
1 DB_PIN1 NC
2 3Vv3 3V3
3 DB_PIN3 NC
4 NC NC
5 GND GND
6 DB_PIN2 nS
7 GND GND
8 3Vv3 U2 pin1
9 DB_SDN_RST RST
10 3Vv3 U2 pin1
Table 3. Connections between BlueNRG board and moth erboard on right connector
Pin J5 motherboard J4 daughterboard
1 GND GND
2 GND GND
3 DB_CSN CSN
4 DB_I03_IRQ IRQ
5 DB_SCLK CLK
6 DB_I02 NC
7 DB_SDI MOSI
8 DB_IO1 NC
9 DB_SDO MISO
10 DB_IO0 NC
2.2.1 Current measurements
To monitor power consumption of the entire BlueNRG daughterboard, remove the jumper
from U2 and insert an ammeter between pins 1 and 2 of the connector. Since power
consumption of the BlueNRG during most operation time is very low, an accurate instrument
in the range of few microamps may be required.
2.2.2 Hardware setup

3

1. Plug the BlueNRG daughterboard into J4 and J5 connectors as in Figure 1.

2. Ensure the jumper configuration on the daughterboard is as in Figure 1

3. Connect the motherboard to the PC with an USB cable (through connector CN1).
4

Verify the PWR LED lights is on.

DoclD025464 Rev 6

13/49

Hardware description UM1686

2.2.3

2.3

231

14/49

STM32L preprogrammed application

The STM32L on STEVAL-IDB002V1 motherboard is preprogrammed with the sensor demo
application when the kits components are assembled (refer to Section 4 for the application
description).

STEVAL-IDB0O03V1 USB dongle

The BlueNRG USB dongle allows users to easily add BLE functionalities to their PC by
plugging it into a USB port. The on-board STM32L microcontroller can also be programmed,
so the board can be used to develop applications that use the BlueNRG. The board can be
powered through the USB connector, which can also be used for I/O interaction with a USB
host. The board also has two buttons and two LEDs for user interaction.

Below is a list of some of the main features that are available on the board (see Figure 2):
. BlueNRG network coprocessor

e STM32L151CBUG6 48-pin microcontroller

. USB connector for power supply and 1/O

e One row of pins with SWD interface

* Chip antenna

e Two user buttons (SW1, SW2)

« Two LEDs (D2, D3)

Microcontroller and connections

The board utilizes an STM32L151CBUS6, which is an ultra low-power microcontroller with
128 KB of Flash memory, 16 KB of RAM, 32-bit core ARM cortex-M3, 4 KB of data
EEPROM, RTC, timers, USART, I1°C, SPI, ADC, DAC and comparators.

The microcontroller is connected to various components such as buttons, LEDs and
connectors for external circuitry. The following table shows which functionality is available
on each microcontroller pin.

3

DoclD025464 Rev 6

UM1686

Hardware description

Table 4. MCU pin description versus board function

Board function
Pin name Pin
num.
LEDs BlueNRG Buttons usB SWD
VLCD 1 VBAT
PC13 2
PC14 3
PC15 4
OSC_IN 5
OSC_OuT 6
NRST 7
VSS_A 8
VvDD_A 9
PAO 10
PA1 11 Button SW2
PA2 12
PA3 13
PA4 14
PA5 15
PAG6 16
PA7 17
PBO 18 Led D2
PB1 19 Led D3
PB2 20 Button SW1
PB10 21 BlueNRG_IRQ
PB11 22
VSS1 23
VDD1 24
PB12 25 SPI2_CS
PB13 26 SPI2_CLK
PB14 27 SPI2_MISO
PB15 28 SPI12_MOSI
PA8 29
PA9 30 EEPROM_CS
PA10 31
PA11 32 USB_DM
‘W DoclD025464 Rev 6 15/49

Hardware description

UM1686

2.3.2

16/49

Table 4. MCU pin description versus board function

(continued)

Board function

Pin name Pin
num.
LEDs BlueNRG Buttons USB SWD
PA12 33 USB_DP
PA13 34 SWDIO
VSS2 35
VDD2 36
PA14 37 SWCLK
PA15 38
PB3 39 SWO
PB4 40
PB5 41
PB6 42
PB7 43
BOOTO 44
PBS 45
PB9 46
VSS 3 47
VDD_4 48

SWD interface

The SWD interface is available through the J2 pins. The SWD interface allows programming
and debugging of the STM32L microcontroller on the board, using an in-circuit debugger

and programmer like the ST-LINK/V2. In Figure 5 the connection scheme illustrating how to
connect the ST-LINK/V2 with the board pins is shown.

Figure 5. SWD connection scheme with ST-LINK/V2

v
19171513119 7 6 3 1

O0@E0E@000
ooooo0ooo0o@

20 181614 1210 8 6 4 2

DoclD025464 Rev 6

3

UM1686 Hardware description
The signals available on the STEVAL-IDB0O03V1 are:
1. GND
2. VDD
3. nRESET
4. SWDIO
5. SWO/TRACE
6. SWCLK
The connection to the ST-LINK/V2 interface is given in the table below, as shown in
Figure 5:
Table 5. SWD connection
Signal name STEYAL-IDSOOlVX ST—LINK/VZ
pin number pin number
GND 1 1416
VDD 2 2/1
NnRESET 3 15
SWDIO 4 7
SWO/TRACE 5 13
SWCLK 6 9
2.3.3 RF connector

)

The STEVAL-IDB003V1 provides two different RF connections: antenna (chip antenna,
default configuration) and UFL connector. Although the default configuration allows
communication on air, it can be useful to switch to the UFL connector in order to connect the
STEVAL-IDB003V1 to RF equipment such as a spectrum analyzer or RF signal generator.

To switch from antenna to UFL connector, capacitor C10 must be removed and capacitor
C42 must be soldered. To restore the default configuration and use the antenna, capacitor
C42 must be removed and capacitor C10 must be soldered. Both capacitors C10 and C42
have the same value: 56 pF. In Figure 6, the two pads for C10 and C42 are shown together
with the chip antenna and UFL connector.

Figure 6. RF connector scheme

UFL Connector

c42
C10

Antenna

DoclD025464 Rev 6 17149

Hardware description UM1686

234

Note:

2.3.5

Note:

2.3.6

2.3.7

18/49

Push-buttons

For user interaction the board has two buttons, both available to the application
- swi
- SW2

SW1 is the DFU button. The BlueNRG USB dongle is preprogrammed with a DFU
application allowing upgrades to the STM32L firmware image through USB and using the
BlueNRG GUI. To activate the DFU, press button SW1 and plug the BlueNRG USB dongle
into a PC USB port.

User LEDs

Two LEDs are available:
- D2:red
— DS3: orange

When DFU is activated, LED D3 is blinking

Hardware setup
Plug the BlueNRG USB dongle into a PC USB port.

STM32L preprogrammed application

The STM32L on the STEVAL-IDB003V1 motherboard is preprogrammed with the
BlueNRG_VCOM_x_x.hex application when the kits components are assembled.

3

DoclD025464 Rev 6

UM1686

Programming with BlueNRG network processor

3

3.1

3.2

3

Programming with BlueNRG network processor

The BlueNRG provides a high level interface to control its operation. This interface is called
ACI (application-controller interface). The ACI is implemented as an extension to the
standard Bluetooth HCI interface. Since BlueNRG is a network processor, the stack runs
inside the device itself. Hence, no library is required on the external microcontroller, except
for profiles and all the functions needed to communicate with the BlueNRG SPI interface.

The development kit software includes sample code that shows how to configure BlueNRG
and send commands or parsing events. The source library is called simple BlueNRG HCI to
distinguish it from the library for the complete profile framework (not present in the software
development kit). This library is able to handle multiple profiles at the same time and
supports several Bluetooth GATT-based profiles for BlueNRG. Documentation on the ACl is
provided in a separate document.

Figure 7. Profile framework structure
Proximity FindMe HOGP | | |

Basic profile framework

Requirements

In order to communicate with BlueNRG network processor very few resources are needed
by the main processor. These are listed below:

— SPl interface
— Platform-dependent code to write/read to/from SPI
— Atimer to handle SPI timeouts or to run Bluetooth LE Profiles

Minimum requirements in terms of Flash and RAM space largely depend on the functionality
needed by the application, on the microprocessor that will run the code and on the compiler
toolchain used to build the firmware.

On the STM32L (Cortex-M3 core), the memory footprint for the code interfacing the
BlueNRG requires few kilobytes of Flash and RAM (typically 2-4 KB of Flash, and 0.8-1.5
KB of RAM). So a complete simple application (like the BlueNRG sensor demo) could
require just 15 KB of Flash and 2 KB of RAM.

If using the complete BlueNRG profile framework, the memory footprint is around 9 KB of
code and 3 KB of data for just the ACI interface and the profile framework functions. The
memory required for the profiles can vary depending on the complexity of the profile itself.
For example, code for HID-over-GATT host is around 6 KB, while for heart rate monitor is
around 2.3 KB.

Software directory structure

The Projects folder contains some sample code that can be used on the application
processor to control the BlueNRG. Platform-dependent code is also provided for STM32L1
platforms. The example project provided in the package will run “as is” on the development
kit.

DoclD025464 Rev 6 19/49

Programming with BlueNRG network processor UM1686

20/49

The files are organized using the following folder structure:

Drivers. It contains all the STM32L1xx Cube library framework files.

Middlewares\ST\STM32_BlueNRG\SimpleBlueNRG_HCI. Contains the code
that is used to send ACI commands to the BlueNRG network processor. It
contains also definitions of BlueNRG events.

platform. Contains all the platform-dependent files (only on STM32L1xx standard
library framework). These can be taken as an example to build applications that
can be run on other platforms.

Project_Cube, Projects_ STD_Library. Contains source based, respectively, on
STM32L1xx Cube library and on STM32L1xx standard library frameworks, that
will use the Bluetooth technology with the BlueNRG. Project files for IAR
embedded workbench are also available.

3

DoclD025464 Rev 6

UM1686

BlueNRG sensor profile demo

4

3

BlueNRG sensor profile demo

The software development kit contains an example, which implements a proprietary
Bluetooth profile: the sensor profile. This example is useful for building new profiles and
applications that use the BlueNRG network processor. This GATT profile is not compliant to
any existing specification. The purpose of this project is simply to show how to implement a
given profile.

This profile exposes two services: acceleration service and environmental service. Figure 8
shows the whole GATT database, including the GATT and GAP services that are
automatically added by the stack.

One of the acceleration service’s characteristics has been called free-fall characteristic. This
characteristic cannot be read or written but can be notified. The application will send a
notification on this characteristic (with value equal to 0x01) if a free-fall condition has been
detected by the LIS3DH MEMS sensor (the condition is detected if the acceleration on the 3
axes is near zero for a certain amount of time). Notifications can be enabled or disabled by
writing on the related client characteristic configuration descriptor.

The other characteristic exposed by the service gives the current value of the acceleration
that is measured by the accelerometer. The value is made up of six bytes. Each couple of
bytes contains the acceleration on one of the 3 axes. The values are given in mg. This
characteristic is readable and can be natified if notifications are enabled.

Another service is also defined. This service contains characteristics that expose data from
some environmental sensors: temperature, pressure and humidity(b). For each
characteristic, a characteristic format descriptor is present to describe the type of data
contained inside the characteristic. All of the characteristics have read-only properties

b. An expansion board with LPS25H pressure sensor and HTS221 humidity sensor can be connected to the
motherboard through the expansion connector (F in Figure 3). If the expansion board is not detected, only
temperature from STLM75 will be used.

DoclD025464 Rev 6 21/49

BlueNRG sensor profile demo

UM1686

4.1

4.2

22/49

Figure 8. BlueNRG sensor demo GATT database

descr=0x0000}

Handle UUID (16 or 128bit) Attribute Type Properties Initial Parameter Value Comment
w
e s
B E N E
RoENSW D NGwx
D oorA T BmAT
10001 2800 Primary Senice {Senice=0x1801 (*Attribute Profile")}
2 0002 2803 Characteristic X {handle=0x0003, UUID=0x2A05}
30003 2A08 Service Changed {start handle=0x0001, end handle=0xFFFF}
4 0004 2902 Client Characteristic Configuration 0x0000
5 0005 2800 Primary Senice {Senice=0x1800 ("Generic Access Profile")}
6 0006 2803 Characteristic XXX X {handle=0x0007, UUID=0x2A00}
7 0007 2400 Device Name “bluenrg”
8 0008 2803 Characteristic X X% {nandle=0x0009, UUID=0x2A01}
9 0009 2401 Appearance 0x0000
e 0 S [Senice=0x02366EB0CT IATETOABA0N0ZABDECE B
("Acc Sevice")}
{handle=0x0012.
CRCo = SLTEELE X UUID=0xE23ETBAOCF4A11E18FFC0002A5D5C5 18}
18 o1z EZIETBAICFAATIETGFFCO oo Eail 6 Indication with value 1 when a freel fall
002A5D5C51B condition is detected
19 0013 2902 Client Characteristic Configuration 0x0000
{handle=0x0015
e 2809 Chetcteristio A S UUID=0x340A1B80CFAB11E1AC360002A5D5C5 16}
340A1BB0CFAB11E1AC3600 r X-Axis (2bytes) Y-Axis (2bytes) Z-Axis
21 0015 s Acceleration 0x000000000000 Sl
2 0016 2902 Client Characteristic Configuration 0x0000
% oo o Primary Senice [Senice=0x42021A40EATT11E262D00002AD5CE 1B
("Env Service")}
{handle=0x0019,
4 s 20 Charcieristic S UUID=0xA32E5520E47711E2AIE30002A5D5C5 18}
A32EE520E47711E2AIEI00 Temperature in tenths of degree
2 0019 et Temperature 0x0000 M
2904 Characteristic Format {format=0x0E, exp=-1, unit=0x272F n_sp=0x00. format=sint16, unit=temperature
26 001A
descr=0x0000} celsius
{handle=0x001C,
TR0 itk ST i UUID=0xCD20C4B0E48B11E2840B0002AED5C5 1B}
CD20C4B0E48B11E2840800
28 001C el U Pressure 0x000000 Pressure in hundredths of millibar
%I 507D 2904 Characteristic Format {format=0x0F , exp=5, unit=0x2780, n_sp=0x00 ka8, urit=pevsaums bar
descr=0x0000}
- {handle=0x001F
i b SEEECIETS X UUID=0x01C50860E48C 11E2A0730002A5D5C5 18}
01C50B60E48C11E2A07300 s
31 00fF DOSEneC e Humidity 0x0000 Humidity in tenths of RH
W 2904 Characteristic Format {format=0x06, exp=—1, unt=0x2700, n_sp=0x00, [0 Ll L less

Supported platforms

The BlueNRG sensor profile demo is supported only on the BlueNRG development platform
(STEVAL-IDB002V1).

BlueNRG app for smartphones

An application is available for smartphones (iOS and android), that works with the sensor
profile demo. The development kits are preprogrammed with the sensor profile demo
firmware. If the development board has been flashed with another firmware, it can be
programmed with the correct firmware. The correct pre-compiled firmware can be found
inside firmware folder (BlueNRG_SensorDemo.hex). The source file for the demo is inside
the project folder.

This app enables notifications on the acceleration characteristic and displays the value on
the screen. Data from environmental sensors are also periodically read and displayed.

DoclD025464 Rev 6

3

UM1686 BlueNRG sensor profile demo

Figure 9. BlueNRG app
Locked SIM 12:13 3 Locked SIM 12:12 3 B3| Locked SIM 12:13 3 B3|

£ (P
Back | Accel. | Temp. | RssI | { Back Accel. ‘ Temp. ‘ RSS! { Back Accel. ‘ Temp. ‘ RsSI

— !

-~
\

| —\

\,
N\ 57 4

4.3 BlueNRG sensor profile demo: connection with a central
device

This section describes how to interact with a central device, while BlueNRG is acting as a
peripheral. The central device can be another BlueNRG acting as a master, or any other
Bluetooth smart or smart-ready device.

First, BlueNRG must be set up. In order to do this, a series of ACl command need to be sent
to the processor.

431 Initialization

BlueNRG's stack must be correctly initialized before establishing a connection with another
Bluetooth LE device. This is done with two commands:
— aci_gatt_init()
— aci_gap_init(GAP_PERIPHERAL_ROLE,&service_handle,
&dev_name_char_handle, &appearance_char_handle);

Where: Role = GAP_PERIPHERAL_ROLE.

See ACI documentation for more information on these commands and on those that follow
as well. Peripheral role must be specified inside the GAP_INIT command.

432 Add service and characteristics

BlueNRG's Bluetooth LE stack has both server and client capabilities. A characteristic is an
element in the server database where data are exposed. A service contains one or more
characteristics. Add a service using the following command. Parameters are provided only
as an example.

— aci_gatt_add_serv(0x01, 0xA001, 0x01, 0x06, & Service_Handle);

Where: Service_UUID_Type=0x01, Service_UUID_16=0xA001, Service_Type=0x01,
Max_Attributes Records=0x06.

3

DoclD025464 Rev 6 23/49

BlueNRG sensor profile demo UM1686

4.3.3

4.3.4

4.3.5

24/49

The command will return the service handle on variable Service_Handle (e.g., 0x0010). A
characteristic must now be added to this service. This service is identified by the service
handle.

— aci_gatt_add_char (Service_Handle, 0x01, 0xA002, 10, 0x1A,0x00, 0x01, 0x07,
0x01, &Char_Handle);

Where: Char_UUID_Type=0x01, Char_UUID_16=0xA002, Char_Value_Length=10,
Char_Properties=0x1A,Security Permissions=0x00, GATT_Evt Mask=0x01,
Enc_Key_Size=0x07, Is_Variable=0x01.

With this command a variable-length characteristic has been added, with read, write and
notify properties. The characteristic handle is also returned (Char_Handle).

Set security requirements

BlueNRG exposes a command that the application can use to specify its security
requirements. If a characteristic has security restrictions, a pairing procedure must be
initiated by the central in order to access that characteristic. Let's assume we want the user
to insert a passcode during the pairing procedure.

— aci_gap_set_authentication_requirement (0x01, 0,0, 7, 16, 123456, 1);

Where: Char_UUID_Type=0x01, Char_UUID_16=0xA002, Char_Value_Length=10,
Char_Properties=0x1A,Security Permissions=0x00, GATT_Evt Mask=0x01,
Enc_Key_Size=0x07, Is_Variable=0x01.

Enter connectable mode

Use GAP ACI commands to enter one of the discoverable and connectable modes.

— aci_gap_set_discoverable (0x00, 0x800,0x900, 0x00, 0x00, 0x08, local_name,
0x00, 0x00, 0x0000, 0x0000);

Where: Advertising_Type=0x00, Advertising_Interval_Min=0x800,
Advertising_Interval _Max=0x900, Own_Address_Type=0x00,
Advertising_Filter_Policy=0x00, Local_Name_Length=0x08, local_name[] =
{AD_TYPE_COMPLETE_LOCAL_NAME,'B"I''u','e',N',/'R",'G'};
Service_UUID_Length=0x00, Service_UUID_List=0x00,
Slave_Connection_Interval_Min=0x0000, Slave_Connection_Interval_Max=0x0000.

The Local_Name parameter contains the name that will be present in advertising data, as
described in Bluetooth core specification version 4.0, Vol. 3, Part C, Ch. 11.

Connection with central device

Once BlueNRG is put in a discoverable mode, it can be seen by a central device in
scanning.

Any Bluetooth smart and smart-ready device can connect to BlueNRG, such as a
smartphone. LightBlue is one of the applications in the Apple store for iPhone® 4S/5 and
later versions of Apple’s iPhone.

Start the LightBlue application. It will start to scan for peripherals. A device with the
BlueNRG name will appear on the screen. Tap on the box to connect to the device. A list of
all the available services will be shown on the screen. Touching a service will show the
characteristics for that service.

DoclD025464 Rev 6 ‘Yl

UM1686

BlueNRG sensor profile demo

4.4

44.1

3

BlueNRG has added two standard services: GATT Service (0x1801) and GAP service
(0x1800).

Try to read the characteristic from the service just added (0xA001). The characteristic has a
variable length attribute, so you will not see any value. Write a string into the characteristic
and read it back.

BlueNRG can send notifications of the characteristic that has been previously added, with
UUID 0xA002 (after notifications have been enabled). This can be done using the following
command:

— aci_gatt_update_char_value (Service_Handle, Char_Handle, 0,0x05,'hello");
where: Val_Offset=0, Char_Value_Length=0x05, Char_Value="hello'.

Once this ACI command has been sent, the new value of the characteristic will be displayed
on the phone.

BlueNRG sensor demo: central profile role

This application implements a basic version of the BlueNRG Sensor Profile Central role
which emulates the BlueNRG Sensor Demo applications available for smartphones (i0S
and Android).

It configures a BlueNRG device as a BlueNRG Sensor device, Central role which is able to
find, connect and properly configure the free fall, acceleration and environment sensor
characteristics provided by a BlueNRG development platform, configured as a BlueNRG
Sensor device, Peripheral role.

This application uses a new set of APIs that allow the performance of the following
operations on a BlueNRG Master/Central device:

— Master Configuration Functions

— Master Device Discovery Functions

— Master Device Connection Functions

— Master Discovery Services & Characteristics Functions
— Master Data Exchange Functions

— Master Security Functions

— Master Common Services Functions

These APIs are provided through binary libraries available on Projects\Bluetooth
LE\Profile_Framework_Central\library. The master library APIs are documented in doxygen
format within the SW package.

The BlueNRG Sensor Demo Central role is supported on the BlueNRG development
platform (STEVAL-IDB002V1) and on the BlueNRG USB dongle (STEVAL-IDB003V1).

The sections that follow describe how to use the master library APIs for configuring a
BlueNRG Sensor Demo Central device.

Initialization

BlueNRG's master library must be correctly initialized before establishing a connection with
another

Bluetooth LE device. This is done with this command:
— Master_Init(¶m)

DoclD025464 Rev 6 25/49

BlueNRG sensor profile demo UM1686

4.4.2

4.4.3

4.4.4

26/49

param variable allows to set the initialization parameters (device address, name, ...).

Refer to the master library doxygen documentation for more information about the
command and related parameters.

On the application main loop, the Master_Process() API has to be called in order to process
the Master library state machines.

Discovery a sensor peripheral device

In order to discover a Sensor Peripheral device, a discovery procedure has to be started
with the master library command:

— Master_DeviceDiscovery(&devDiscParam);

devDiscParam variable allows to set the discovery parameters (discovery procedure,
interval, window, ...).

Refer to the master library doxygen documentation for more information about the
command and related parameters.

The found devices are returned through the Master_DeviceDiscovery CB() master library
callback (DEVICE_DISCOVERED status).

Connect to discovered sensor peripheral devic e

Once a Sensor Peripheral device has been found, the Sensor Central device connects to it
by using the following master library command:

— Master_DeviceConnection(&connParam);

connParam variable allows to set the connection parameters (connection procedure, scan
duration, window,...).

Refer to the master library doxygen documentation for more information about the
command and related parameters.

When the connection is established with success, the Master_Connection_CB() master
library callback is called with CONNECTION_ESTABLISHED_EVT event.

Discovery sensor peripheral services and char acteristics

Once a Sensor Peripheral device has been connected, the Sensor Central device starts
discovery all primary service procedure, by using the following master library command:

— Master_GetPrimaryServices()

Refer to the master library doxygen documentation for more information about the
command and related parameters.

When services are discovered, the Master_ServiceCharacPeerDiscovery CB master library
callback is called with PRIMARY_SERVICE_DISCOVERY code. In particular the sensor
and environmental services are discovered.

For each discovered service, the related characteristics are discovered by using the
following master library command:

— Master_GetCharacOfService()

Refer to the master library doxygen documentation for more information about the
command and related parameters.

3

DoclD025464 Rev 6

UM1686

BlueNRG sensor profile demo

4.4.5

4.4.6

3

When the characteristics of a service are discovered, the
Master_ServiceCharacPeerDiscovery CB master library callback is called with
GET_CHARACTERISTICS_OF_A_SERVICE code. In particular the sensor acceleration,
free fall and temperature characteristics are discovered.

Enable sensor peripheral acceleration and fre e fall notifications

Once the Sensor Peripheral device sensor acceleration and free fall characteristics have
been discovered, the Sensor Central device can enable the related characteristics
notification by using the following master library command:

— Master_Notifindic_Status(masterContext.connHandle, handle, TRUE, FALSE);

Refer to the master library doxygen documentation for more information about the
command and related parameters.

When a characteristic notification is enabled, the Master _PeerDataExchange CB() master
library callback is called with NOTIFICATION_INDICATION_CHANGE_STATUS code. On a
Sensor Central device context, the sensor acceleration and free fall characteristics
notifications coming from the Sensor Peripheral device are received through the

Master _PeerDataExchange_CB() master library callback,
NOTIFICATION_DATA_RECEIVED code. Each received values is displayed on the
connected hyper terminal (115200, 8, N, 1).

Read the sensor peripheral temperature sensor characteristic

Once the Sensor Peripheral device sensor temperature characteristic is discovered, the
Sensor Central device can read the related characteristic value by using the following
master library command:

— Master_Read_ Value()

Refer to the master library doxygen documentation for more information about the
command and related parameters.

The characteristic value is received though the Master_PeerDataExchange CB() master
library callback, READ_VALUE_STATUS code. Each received value is also displayed on
the connected hyper terminal (115200, 8, N, 1).

DoclD025464 Rev 6 27149

BlueNRG chat demo application UM1686

5

5.1

5.2

28/49

BlueNRG chat demo application

The software development kit contains another example, which implements a simple 2-way
communication between two BlueNRG devices. It shows a simple point-to-point wireless
communication using the BlueNRG product.

This demo application exposes one service: chat service.

The chat service contains 2 characteristics:

. The TX characteristic: the client can enable notifications on this characteristic. When
the server has data to be sent, it will send notifications which will contain the value of
the TX characteristic.

. The RX characteristic: this is a writable characteristic. When the client has data to be
sent to the server, it will write a value into this characteristic.

e The maximum length of the characteristic value is 20 bytes.

There are 2 device roles which can be selected through the specific EWARM workspace:
— The “Server” that exposes the chat service (BLE peripheral device).
— The “Client” that uses the chat service (BLE central device).

The application requires 2 devices to be programmed respectively with the 2 devices roles:

server and client. The user must connect the 2 devices to a PC through USB and open a
serial terminal on both, with the following configurations:

Table 6. Serial port configuration

Baudrate 115200 bit/sec

Data bits 8 bit
Parity None bit

Stop bits 1 bit

The application will listen for keys typed into one device and upon pressing the keyboard
return key, it will send them to the remote device. The remote device will listen for RF
messages and will output them in the serial port. In other words, anything typed in one
device will be visible to the other device.

Supported platforms

The BlueNRG chat demo (server & client roles) is supported on the BlueNRG development
platform (STEVAL-IDB002V1) and on the BlueNRG USB dongle (STEVAL-IDB0O03V1).

BlueNRG chat demo application: peripheral & cen tral
devices

This section describes how two BLE chat devices (server-peripheral & client-central)
interact with each other in order to set up a point-to-point wireless chat communication.

First, BlueNRG must be set up on both devices. In order to do this, a series of ACI
commands need to be sent to the processor.

DoclD025464 Rev 6 ‘Yl

UM1686 BlueNRG chat demo application

5.2.1 Initialization

BlueNRG's stack must be correctly initialized before establishing a connection with another
Bluetooth LE device. This is done with two commands

e aci_gatt_init()
* BLE Chat, “Server” role:
— aci_gap_init(GAP_PERIPHERAL_ROLE, &service_handle,
&dev_name_char_handle, &appearance_char_handle);
* BLE Chat, “Client role:

— aci_gap_init(GAP_CENTRAL_ROLE, &service_handle,
&dev_name_char_handle, &appearance_char_handle);

Peripheral & central BLE roles must be specified inside the GAP_INIT command. See ACI
documentation for more information on these commands and on those that follow.

5.2.2 Add service and characteristics

The chat service is added on the BLE chat, server role device using the following command:

aci_gatt_add_serv(UUID_TYPE_128, service_uuid, PRIMARY_SERVICE, 7,
&chatServHandle);

Where service_uuid is the private service UUID 128 bits allocated for the chat service
(Primary service).

The command will return the service handle in chatServHandle.

The TX characteristic is added using the following command (on BLE Chat, Server role
device):

aci_gatt_add_char(chatServHandle, UUID_TYPE_128, charUuidTX, 20,
CHAR_PROP_NOTIFY, ATTR_PERMISSION_NONE, 0, 16, 1, &TXCharHandle);

Where charUuidTX is the private characteristic UUID 128 bits allocated for the TX
characteristic (notify property). The characteristic handle is also returned (on
TXCharHandle).

The RX characteristic is added using the following command (on BLE Chat, Server role
device):

aci_gatt_add_char(chatServHandle, UUID_TYPE_128, charUuidRX, 20,
CHAR_PROP_WRITE|CHAR_PROP_WRITE_WITHOUT_RESP,
ATTR_PERMISSION_NONE, GATT_SERVER_ATTR_WRITE,16, 1, &RXCharHandle);

Where charUuidRX is the private characteristic UUID 128 bits allocated for the RX
characteristic (write property). The characteristic handle is also returned (on
RXCharHandle).

See ACI documentation for more information on these commands as well as those that
follow.

5.2.3 Set security requirements

BlueNRG exposes a command that the application can use to specify its security
requirements. If a characteristic has security restrictions, a pairing procedure must be
initiated by the central in order to access that characteristic. On BLE chat demo, a fixed pin
(123456) is used as follows:

3

DoclD025464 Rev 6 29/49

BlueNRG chat demo application UM1686

5.24

5.2.5

30/49

aci_gap_set_auth_requirement(MITM_PROTECTION_REQUIRED,O0OB_AUTH_DATA_AB
SENT,NULL,7,16, USE_FIXED_PIN_FOR_PAIRING,123456,BONDING);

Enter connectable mode

On BLE chat, server role device uses GAP ACI commands to enter into general
discoverable mode:

aci_gap_set_discoverable(ADV_IND, 0, 0, PUBLIC_ADDR, NO_WHITE_LIST_USE,8,
local_name, 0, NULL, 0, 0);

The local_name parameter contains the name that will be present in advertising data, as
described in the Bluetooth core specification version 4.0, Vol. 3, Part C, Ch. 11.

Connection with central device

Once the BLE chat, server role device is put in a discoverable mode, it can be seen by the
BLE chat, client role device in order to create a Bluetooth low energy connection.

On BLE chat, client role device uses GAP ACI commands to connect with the BLE chat,
server role device in advertising mode:

aci_gap_create_connection(0x4000, 0x4000, PUBLIC_ADDR, bdaddr, PUBLIC_ADDR, 9,
9, 0, 60, 1000, 1000);

where bdaddr is the peer address of the BLE chat, client role device.

Once the 2 devices are connected, the user can set up a serial terminal and type into each
of them. The typed characters will be respectively stored in 2 buffers and upon pressing the
keyboard return key, BLE communication will work as follows:

1. On BLE chat, server role device, the typed characters will be sent to BLE chat, client
role device by notifying the TX characteristic that has been previously added (after
notifications have been enabled). This can be done using the following command:

aci_gatt _update_char_value(chatServHandle, TXCharHandle,0,len,(tHalUint8 *)cmd+j)

2. On BLE chat, client role device, the typed characters will be sent to the BLE chat,
server role device, by writing the RX characteristic that has been previously added.
This can be done using the following command:
aci_gatt_write_without_response(connection_handle, RX_HANDLE+1, len, (tHalUint8
*)cmd+)

Where connection_handle is the handle returned on connection creation as a
parameter of the EVT_LE_CONN_COMPLETE event.

Once these AClI commands have been sent, the values of the TX, RX characteristics are
displayed on the serial terminals.

3

DoclD025464 Rev 6

UM1686

BlueNRG chat demo application

Figure 10. BLE chat client example

Figure 11. BLE ch at server example

. COM76:115200baud - Tera Term VT

[

4 COM78:115200baud - Tera Term VT EE

File Edit Setup Control Window Help

File Edit Setup Control Window Help

3

DoclD025464 Rev 6 31/49

BlueNRG Beacon demonstration application UM1686

6

6.1

6.2

6.2.1

6.2.2

Note:

32/49

BlueNRG Beacon demonstration application

The software development kit contains another example, which shows how to configure a
BlueNRG device to advertise specific manufacturing data and allow another BLE device to
know if it is in the range of the BlueNRG beacon device.

Supported platforms

The BlueNRG Beacon demo is supported by the BlueNRG development platform (STEVAL-
IDB002V1) and the BlueNRG USB dongle (STEVAL-IDB003V1).

BLE Beacon application setup

This section describes how to configure a BlueNRG device for acting as a beacon device.

Initialization

The BlueNRG stack must be correctly initialized as follows:
— aci_gatt_init()
— aci_gap_init(GAP_PERIPHERAL_ROLE, &service_handle,
&dev_name_char_handle, &appearance_char_handle);

Define advertising data

The BLE Beacon application advertises the following manufacturing data:

Table 7. BlueNRG Beacon advertising manufacturingd ata

Data field Description Notes
Company identifier code SIG company identifier (S?’el\jl?éjrlct):esle%)t(?oonsi,(?s)
ID Beacon ID Fixed value
Location UUID Beacons UUID Used to distinguish specific
beacons from others
Major number Identifier for a group of beacons Used to group a related set of
beacons
Minor number Identifier for a single beacon | Used to identify a single beacon
Tx Power 2's complement of the Tx power Used to establish hqw faryou
are from device

SIG company identifiers are available at:

https://www.bluetooth.org/en-us/specification/assigned-numbers/company-identifiers

3

DoclD025464 Rev 6

UM1686 BlueNRG Beacon demonstration application

6.2.3 Entering non-connectable mode

The BLE Beacon device uses the GAP ACI command to enter non-connectable mode as
follows:

aci_gap_set_discoverable(ADV_NONCONN_IND, 160, 160, PUBLIC_ADDR,
NO_WHITE_LIST_USE,0, NULL, 0, NULL, 0, 0);

In order to advertise the specific selected manufacturer data, the BLE Beacon application
uses the following GAP ACls:

/* Remove TX power level field from the advertising data: it is necessary to have enough
space for the beacon manufacturing data */

ret = aci_gap_delete_ad_type(AD_TYPE_TX POWER_LEVEL);

/* Define the beacon manufacturing payload */

const uint8_t manuf_data[] = {26, AD_TYPE_MANUFACTURER_SPECIFIC_DATA,
0x30, 0x00, //Company identifier code (Default is 0x0030 - STMicroelectronics)
0x02, /1D
0x15, /ILength of the remaining payload
OXE2, Ox0A, 0x39, OxF4, 0x73, OxF5, 0x4B, 0xC4, //Location UUID
0xA1,